

Visit the National Academies Press online, the authoritative source for all books from the
National Academy of Sciences, the National Academy of Engineering, the Institute of
Medicine, and the National Research Council:

• Download hundreds of free books in PDF
• Read thousands of books online, free
• Sign up to be notified when new books are published
• Purchase printed books
• Purchase PDFs
• Explore with our innovative research tools

Thank you for downloading this free PDF. If you have comments, questions or just want
more information about the books published by the National Academies Press, you may
contact our customer service department toll-free at 888-624-8373, visit us online, or
send an email to comments@nap.edu.

This free book plus thousands more books are available at http://www.nap.edu.

Copyright © National Academy of Sciences. Permission is granted for this material to be
shared for noncommercial, educational purposes, provided that this notice appears on the
reproduced materials, the Web address of the online, full authoritative version is retained,
and copies are not altered. To disseminate otherwise or to republish requires written
permission from the National Academies Press.

ISBN: 0-309-14958-4, 126 pages, 6 x 9, (2009)

This free PDF was downloaded from:
http://www.nap.edu/catalog/12840.html

Report of a Workshop on The Scope and Nature of
Computational Thinking

Committee for the Workshops on Computational
Thinking; National Research Council�

http://www.nap.edu/
http://www.nas.edu/nas
http://www.nae.edu/
http://www.iom.edu/
http://www.iom.edu/
http://www.nationalacademies.org/nrc
http://www.nap.edu/
mailto:comments@nap.edu
http://www.nap.edu./

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

i

Report of a Workshop on

The Scope and Nature of
Computational Thinking

Committee for the Workshops on Computational Thinking

Computer Science and Telecommunications Board

Division on Engineering and Physical Sciences

THE NATIONAL ACADEMIES PRESS
Washington, D.C.

www.nap.edu

http://www.nap.edu

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

ii

THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC
20001

NOTICE: The project that is the subject of this report was approved by the Governing Board
of the National Research Council, whose members are drawn from the councils of the
National Academy of Sciences, the National Academy of Engineering, and the Institute of
Medicine. The members of the committee responsible for the report were chosen for their
special competences and with regard for appropriate balance.

Support for this project was provided by the National Science Foundation under sponsor
award number CNS-0831827. Any opinions expressed in this material are those of the
authors and do not necessarily reflect the views of the agencies and organizations that
provided support for the project.

International Standard Book Number [xxxx]
International Standard Book Number [yyyy]

Copies of this report are available from

The National Academies Press
500 Fifth Street, N.W., Lockbox 285
Washington, DC 20055
800/624-6242
202/334-3313 (in the Washington metropolitan area)
http://www.nap.edu

Copyright 2010 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

http://www.nap.edu

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

iii

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of
distinguished scholars engaged in scientific and engineering research, dedicated to the
furtherance of science and technology and to their use for the general welfare. Upon the
authority of the charter granted to it by the Congress in 1863, the Academy has a mandate
that requires it to advise the federal government on scientific and technical matters.
Dr . Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the
National Academy of Sciences, as a parallel organization of outstanding engineers. It is
autonomous in its administration and in the selection of its members, sharing with the
National Academy of Sciences the responsibility for advising the federal government. The
National Academy of Engineering also sponsors engineering programs aimed at meeting
national needs, encourages education and research, and recognizes the superior
achievements of engineers. Dr . Charles M. Vest is president of the National Academy of
Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences
to secure the services of eminent members of appropriate professions in the examination of
policy matters pertaining to the health of the public. The Institute acts under the
responsibility given to the National Academy of Sciences by its congressional charter to be
an adviser to the federal government and, upon its own initiative, to identify issues of
medical care, research, and education. Dr . Harvey V . Fineberg is president of the Institute
of Medicine.

The National Research Council was organized by the National Academy of Sciences in
1916 to associate the broad community of science and technology with the Academy’s
purposes of furthering knowledge and advising the federal government. Functioning in
accordance with general policies determined by the Academy, the Council has become the
principal operating agency of both the National Academy of Sciences and the National
Academy of Engineering in providing services to the government, the public, and the
scientific and engineering communities. The Council is administered jointly by both
Academies and the Institute of Medicine. Dr . Ralph J. Cicerone and Dr . Charles M. Vest are
chair and vice chair , respectively, of the National Research Council.

www.national-academies.org

http://www.national-academies.org

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

iv

COMMITTEE FOR THE WORKSHOPS ON COMPUTATIONAL THINKING

MARCIA LINN, University of California, Berkeley, Chair
ALFRED V . AHO (NAE), Columbia University
M. BRIAN BLAKE, Georgetown University
ROBERT CONSTABLE, Cornell University
YASMIN B. KAFAI, University of Pennsylvania
JANET L. KOLODNER, Georgia Institute of Technology
LAWRENCE SNYDER, University of Washington, Seattle
URI WILENSKY, Northwestern University

Staff

HERBERT S. LIN, Study Director and Chief Scientist, CSTB
ENITA WILLIAMS, Associate Program Officer
SHENAE BRADLEY, Senior Program Assistant

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

v

COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD

ROBERT F . SPROULL, Sun Microsystems, Inc., Chair
PRITHVIRAJ BANERJEE, Hewlett Packard Company
WILLIAM J. DALLY , NVIDIA Corporation and Stanford University
DEBORAH ESTRIN, University of California
KEVIN KAHN, Intel Corporation, Hillsboro
JAMES KAJIYA, Microsoft Corporation
JOHN E. KELLY III, IBM
JON M. KLEINBERG, Cornell University
WILLIAM H. PRESS, University of Texas
PRABHAKAR RAGHAVAN, Yahoo! Research
DAVID E. SHAW, Columbia University
ALFRED Z. SPECTOR, Google, Inc.
PETER SZOLOVITS, Massachusetts Institute of Technology
PETER J. WEINBERGER, Google, Inc.

JON EISENBERG, Director
RENEE HAWKINS, Financial and Administrative Manager
HERBERT S. LIN, Chief Scientist, CSTB
LYNETTE I. MILLETT, Senior Program Officer
NANCY GILLIS, Program Officer
ENITA A. WILLIAMS, Associate Program Officer
VIRGINIA BACON TALATI, Program Associate
SHENAE BRADLEY, Senior Program Assistant
ERIC WHITAKER, Senior Program Assistant

For more information on CSTB, see its Web site at http://www.cstb.org, write to CSTB,
National Research Council, 500 Fifth Street, N.W., Washington, DC 20001, call (202) 334-
2605, or e-mail the CSTB at cstb@nas.edu.

http://www.cstb.org
mailto:cstb@nas.edu

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

vii

Preface

As the use of computational devices has become widespread, there is a need to

understand the scope and impact of what is sometimes called the Information Revolution or
the Age of Digital Information. This is particularly apparent in education at all levels.
Various efforts have been made to introduce K-12 students to the most basic and essential
computational concepts, and college curricula have tried to provide students a basis for life-
long learning of increasingly new and advanced computational concepts and technologies.
At both ends of this spectrum, however , most efforts have not focused on fundamental
concepts.

One common approach to incorporating computation into the K-12 curriculum is to
emphasize computer literacy, which generally involves using tools to create newsletters,
documents, Web pages, multimedia presentations, or budgets. A second common approach
is to emphasize computer programming by teaching students to program in particular
programming languages such as Java or C++. A third common approach focuses on
programming applications such as games, robots, and simulations.

But in the view of many computer scientists, these three major approaches—
although useful and arguably important—should not be confused with learning to think
computationally. In this view, computational thinking is a fundamental analytical skill that
everyone, not just computer scientists, can use to help solve problems, design systems, and
understand human behavior . As such, they believe that computational thinking is
comparable to the mathematical, linguistic, and logical reasoning that is taught to all
children. This view mirrors the growing recognition that computational thinking (and not
just computation) has begun to influence and shape thinking in many disciplines—Earth
sciences, biology, and statistics, for example. Moreover , computational thinking is likely to
benefit not only other scientists but also everyone else—bankers, stockbrokers, lawyers, car
mechanics, sales people, health care professionals, artists, and so on.

To explore these notions in greater depth, the Computer and Information Science
and Engineering Directorate of the National Science Foundation asked the National Research
Council to conduct two workshops to explore the nature of computational thinking and its
cognitive and educational implications. This report summarizes the first workshop, which
focused on the scope and nature of computational thinking and on articulating what
"computational thinking for everyone" might mean. A second workshop, to be held
sometime later , will focus on the cognitive and educational dimensions of computational
thinking.

Although this document was prepared by the Committee for the Workshops on
Computational Thinking based on workshop presentations and discussions, it does not
reflect consensus views of the committee. Under NRC guidelines for conducting workshops
and developing report summaries, workshop activities do not seek consensus and workshop
summaries (such as the present volume) cannot be said to represent “an NRC view” on the
subject at hand. This workshop report reveals the plethora of perspectives on
computational thinking, raises issues for the follow-on workshop concerned with pedagogy,
and suggests the need for the field to build consensus on the scope, nature, and structure

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

viii

of computational thinking. The present report contains a digest of both presentations and
discussion.

The meeting agenda and workshop participants are described in Appendix A and
Appendix B, respectively. Appendix C reprints the executive summary of the National
Research Council’s Being Fluent with Information Technology report (National Academy
Press, Washington DC, 1999). Appendix D provides an extended bibliography for additional
references not contained in footnotes.

Marcia Linn, Chair
 Committee for the Workshops on Computational Thinking

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

ix

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen for their diverse
perspectives and technical expertise, in accordance with procedures approved by the
National Research Council’s (NRC’s) Report Review Committee. The purpose of this
independent review is to provide candid and critical comments that will assist the institution
in making its published report as sound as possible and to ensure that the report meets
institutional standards for objectivity, evidence, and responsiveness to the study charge.
The review comments and draft manuscript remain confidential to protect the integrity of
the deliberative process. We wish to thank the following individuals for their review of this
report:

Edward A. Fox, Virginia Polytechnic Institute
Susanne Hambrusch, Purdue University
David E. Shaw, D.E. Shaw and Company
Gerald Sussman, Massachusetts Institute of Technology
Ursula Wolz, The College of New Jersey
William A. Wulf, University of Virginia

Although the reviewers listed above have provided many constructive comments and

suggestions, they were not asked to endorse the conclusions or recommendations, nor did
they see the final draft of the report before its release. The review of this report was
coordinated by Harold Abelson of the Massachusetts Institute of Technology. Appointed by
the NRC, he was responsible for making certain that an independent examination of this
report was carried out in accordance with institutional procedures and that all review
comments were carefully considered. Responsibility for the final content of this report rests
entirely with the authoring committee and the institution.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

xi

Contents

1. Introduction... 1

1.1 Scope and Approach of This Report ... 1
1.2 Motivation—Why Should Anyone Care About Computational Thinking?...................... 2

2. What Is Computational Thinking? .. 7

2.1 The Landscape of Computational Thinking.. 7
2.2 Computational Thinking as a Range of Concepts, Applications, Tools, and Skill Sets ... 9
2.3 Computational Thinking as Language and the Importance of Programming 11
2.4 Computational Thinking as the Automation of Abstractions 12
2.5 Computational Thinking as a Cognitive Tool.. 13
2.6 Computational Thinking in Contexts Without Programming a Computer................... 14
2.7 The Role of Computers and Technology ... 18
2.8 A Collaborative Dimension to Computational Thinking.. 19
2.9 What Computational Thinking Is Not.. 20

3. Looking Outward.. 31

3.1 The Relationship of Computational Thinking to Mathematics and Engineering.......... 31
3.1.1. Mathematical Thinking... 31
3.1.2. Engineering .. 32

3.2 Disciplinary Applications of Computational Thinking... 33
3.3 Computational Thinking Across Different Disciplines .. 36

3.3.1. Problem Solving/Debugging ... 37
3.3.2. Testing 37
3.3.3. Data Mining and Information Retrieval.. 37
3.3.4. Concurrency and Parallelism .. 38
3.3.5. Modeling 38

4. Relationship to Past and Ongoing Efforts .. 41

4.1 Previous Work.. 41
4.1.1. LOGO 41
4.1.2. Fluency with Information Technology (FIT) ... 42
4.1.3. Computing the Future ... 42
4.1.4. Reflections on the Field ... 45
4.1.5. Engineering in K-12 Education.. 47
4.1.6. Technically Speaking ... 48

4.2 Some Drivers of Change.. 48
4.2.1. The National Science Foundation CPATH Program.. 49
4.2.2. The Computing Research Association Education Committee................................ 49
4.2.3. Advanced Placement Computer Science—NSF Broadening Participation Program

and the College Board ... 50

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

xii

4.2.4. Carnegie Mellon University’s Center on Computational Thinking 50

5. Open Questions.. 53

5.1 What is the structure of Computational Thinking?.. 53
5.2 How Can A Computational Thinker Be Recognized? ... 54
5.3 What is the Connection between Technology and Computational Thinking?............. 55
5.4 What is the Best Pedagogy For Promoting Computational Thinking? 55
5.5 What Is the Proper Institutional Role of the Computer Science Community with

Respect to Computational Thinking?... 56

6. Next Steps ... 59

APPENDIXES

A Workshop Agenda
B Short Biographies of Committee Members, Workshop Participants, and Staff
C Executive Summary from Being Fluent with Information Technology
D Supplemental Bibliography

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

1

1. Introduction

1.1 SCOPE AND APPROACH OF THIS REPORT

This report summarizes a workshop on the nature of computational thinking held

February 19-20, 2009, in Washington, D.C., under the auspices of the National Research
Council’s (NRC’s) Committee for the Workshops on Computational Thinking. The workshop
was structured to gather inputs and insights from computer scientists, information
technologists, and disciplinary experts knowledgeable about how computational thinking
might be relevant to their domains of expertise. It also involved a number of education
researchers and cognitive scientists familiar with educational dimensions of computational
thinking.

Questions posed to workshop participants included the following: What are the
scope and the nature of computational thinking? How does it differ from other ways of
thinking, such as mathematical thinking, quantitative reasoning, scientific thinking, and
fluency with information technology? What kinds of problems require computational
thinking? What are some examples? How, if at all, does computational thinking vary by
discipline? What is the value of computational thinking for nonscientists? How, if at all,
would widespread facility with computational thinking enhance the productivity of American
workers? What affordances are provided by new technologies for computational thinking?1
What is the role of information technology in imparting computational thinking skills? What
parts of computational thinking can be taught without the use of computers? Without the
skills of computer programming?

Although the original workshop agenda was structured around panels devoted to
exploring a subset of the questions above, the discussion throughout the workshop resulted
in useful insights regarding all of these questions. Accordingly, the committee organized its
summary so that thoughts and insights on similar questions would be presented together ,
rather than being scattered throughout a summary organized in accordance with the
original panel structure.

Each succeeding chapter describes some of the main themes arising from a
workshop session. The themes are not conclusions or findings of the committee; they are
ideas, extracted from the discussions during each session and drawn not only from the
presentations of the speakers but also from the discussions among all the participants
(committee, speakers, and attendees), that seem to have formed the gist of the session. In
addition, to improve readability and to promote understanding, background material on
some of the topics raised has been interspersed in this summary.

This report does not include all of the material that was discussed in the committee’s
first workshop. Specifically, in addition to discussions related to the nature of computational

1 Loosely speaking, an affordance is the quality of an artifact that enables someone

to take or to perform an action. Affordances are discussed in somewhat greater detail in
Section 2.5.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

2

thinking, there were many discussions related to pedagogy and how best to expose
students to the ideas of computational thinking. Because the second workshop will be
devoted to that topic, the committee felt that it was better to communicate most of the first
workshop’s pedagogical discussions in the second workshop’s report. That said, this report
(of the first workshop) does foreshadow some of the themes and ideas that will be reflected
in the second report. For example, the second workshop will explore possible connections
between the structure and the pedagogy of computational thinking, as well as the extent to
which it is reasonable to expect individuals to generalize computational thinking abilities
from one problem domain to another .

In addition, the reader is cautioned that the workshop was not structured to result in
a consensus regarding the scope and nature of computational thinking, and the workshop
was deliberately organized to include individuals with a broad range of perspectives. For
this reason and because some of the discussion amounted to brainstorming, this summary
may contain internal inconsistencies that reflect the wide range of views offered by
workshop participants. In keeping with its purpose of exploring the topic, this workshop
summary does not contain findings or recommendations.

1.2 MOTIVATION—WHY SHOULD ANYONE CARE ABOUT COMPUTATIONAL
THINKING?

As it is usually construed, computational thinking includes a broad range of mental

tools and concepts from computer science that help people solve problems, design systems,
understand human behavior , and engage computers to assist in automating a wide range of
intellectual processes. The elements of computational thinking are reasonably well known,
given that they include the computational concepts, principles, methods, languages, models,
and tools that are often found in the study of computer science. Thus, computational
thinking might include reformulation of difficult problems by reduction and transformation;
approximate solutions; parallel processing; type checking and model checking as
generalizations of dimensional analysis; problem abstraction and decomposition; problem
representation; modularization; error prevention, testing, debugging, recovery, and
correction; damage containment; simulation; heuristic reasoning; planning, learning, and
scheduling in the presence of uncertainty; search strategies; analysis of the computational
complexity of algorithms and processes; and balancing computational costs against other
design criteria. Concepts from Computer Science such as algorithm, process, state
machine, task specification, formal correctness of solutions, machine learning, recursion,
pipelining, and optimization also find broad applicability.

Computer science, of course, has no monopoly on such concepts. For example,
physicists have used abstraction and modeling for centuries, logisticians and management
scientists have studied scheduling extensively, and notions of tradeoff are central to the
work of economists and engineers. Nevertheless, computer science provides a basis for a
unified framework and language with which to discuss such notions explicitly, and these
notions are the fundamental concepts of this discipline broadly construed (e.g., including
information science, elements of computational science and engineering, digital media
studies, and so on).

By explicitly articulating these notions, many computer scientists, and certainly the
workshop attendees, believe that it is possible to describe a collection of analytic skills that

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

3

everyone, not just computer scientists, can use to help solve problems, design systems, and
understand human behavior . Thus, they argue, computational thinking is comparable in
importance and significance to the mathematical, linguistic, and logical reasoning that
society today agrees should be taught to all children.

Expanding on these ideas, workshop participants offered a number of reasons for
promulgating computational thinking skills more broadly:

• Succeeding in a technological society. In this view, computational thinking affords

individuals the ability to navigate more effectively through a society in which they
frequently encounter technological devices in their personal lives (cell phones,
automobiles, dishwashers, and so on). In addition, individuals have the opportunity
to take advantage of technological resources (e.g., information on the Internet,
social networking, online education, cloud computing). Finally, individuals
competent in computational thinking are better able to understand the ways in
which technology is relevant to public policy decisions. Workshop participants
including Marcia Linn argued that emphasis on computational thinking in K-12
education would increase equitable access to the resources of modern society.

• Increasing interest in the information technology professions . It is a matter of
record that enrollments in computer science university programs have dropped since
the peak of the dot-com years, though in recent years, these enrollments have
begun to rise again.2 A number of workshop participants, among them Lenore Blum,
argued that a broader promulgation of computational thinking in K-12 students
would help to sustain the rising interest in computing as a profession.

• Maintaining and enhancing U.S. economic competitiveness. Some workshop
participants pointed to reports that noted concerns about offshoring of U.S. jobs and
the U.S. ability to remain economically competitive in a global environment.3 In this
view, a better educated workforce is an essential element of an internationally
competitive workforce, and a number of workshop participants expressed the view
that computational thinking is an essential component of such an education.

• Supporting inquiry in other disciplines. Given the increasingly prominent role that
computational tools are having in other disciplines, several participants, including
Edward Fox and Bill Wulf, argued that a facility with computational thinking would
assist specialists in those other disciplines to more effectively adopt, use, and
develop computational tools. Robert Constable pointed to some of the examples in
Box 1.1. [Boxes and figures for each chapter are located at the end of the chapter
in this prepublication document. The final document will present boxes and figures
close to their call-outs in the text.]

2 Steve Kolowich, 2009, “Computer-Science Enrollment Rises for the First Time in Six

Years,” The Chronicle of Higher Education, March 17, 2009. Available at
http://chronicle.com/blogPost/Computer-Science-Enrollment/4579. Accessed December 28,
2009.

3 See for example, National Research Council, 2007, Rising Above the Gathering
Storm: Energizing and Employing America for a Brighter Economic Future, Washington, DC:
The National Academies Press. Available at
http://www.nap.edu/catalog.php?record_id=11463. Accessed December 28, 2009.

http://chronicle.com/blogPost/Computer-Science-Enrollment/4579
http://www.nap.edu/catalog.php?record_id=11463

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

4

• Enabling personal empowerment. Many workshop participants suggested that a
strong motivator for an individual to learn computational thinking is to gain the
ability to do things that are important to him or her . For example, Roy Pea noted
that in general people want “to do something without error , do those things
efficiently, and do them cost-effectively.” Furthermore, people “constantly have
meta-discourse around routines and processes that help them achieve these goals.”
Computational thinking, Pea noted, provides people with “a way to abstract what
they’re already doing and talking about....Connecting computational thinking in a
personally meaningful way is at the heart of tackling the problem of how everyone
can be brought into a pathway for developing and using computational thinking in
their everyday lives.”

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

5

Box 1.1 Computation and Computational Thinking for Creating Knowledge

1. The 1976 proof of the Four-Color Conjecture was based on an exhaustive search to

evaluate an enormous number of possible cases. In 2004, the Coq theorem checker
was used to confirm a variant of the original 1976 proof.

2. Computers led to the discovery that the gene regulating the size of tomatoes is
similar to genes involved in cancer in mammals.4

3. Five new pulsars were discovered by mining 12 terabytes of data gathered from the
Arecibo observatory in Puerto Rico.

4. Biologists such as Jane Hillston have used probabilistic process algebras to model the
interaction of proteins within and between cells.

5. Researchers at the Joseph Bell Centre in the United Kingdom have built a system
that constructs a space of hypotheses to explain the evidence in a crime scene.
Such a system has been used to remind detectives of hypotheses they might
otherwise have missed.

6. Predictions about climate change and global warming are enabled only through the
use of computational models of planetary climate and weather . An example of an
unexpected connection discovered using such models (and enormous amounts of
data from automated sensors) is the influence of the surface temperature of the
Indian Ocean on long-term weather patterns over the North Atlantic.

7. The Forma Urbis Romae5 has used computers to help create new primary data from
shards of the great stone map of Rome circa 210 AD by representing the shards so
that they could be treated as geometric puzzle pieces that computers could attempt
to assemble.

8. Computational thinking has helped to transform the earth sciences. Without
computing, geological narratives have tended to be direct, uncoupled, and linear
(because such systems are easier to analyze), but such narratives underestimate the
complexity of the interactions between different geological processes. Computer
modeling enables earth scientists to represent previously intractable relationships
and thus helps them to develop a deeper understanding.

9. Psychologists working on the problem of how humans recognize faces have made
good use of computer-based image morphing techniques. While early experiments
with photos, scissors, and paste were too crude to provide the fine gradations
between images needed to separate rival psychological hypotheses, Vicky Bruce and
collaborators were able to show that faces are encoded in memory by abstracting
them into a small collection of archetypes. Face recognition then consists of a
human matching the current image to the most similar archetype. Bruce's theory of
face recognition is also formulated as a computational process, employing

4 Anne Frary, Clint Nesbitt, Amy Frary, Silvana Grandillo, Esther van der Knaap, Bin

Cong, Jiping Liu, Jaroslaw Meller , Ron Elber , Kevin B. Alpert, and Steven D. Tanksley, 2000,
“T Cloning, Transgenic Expression and Function of fw2.2: A Quantitative Trait Locus Key to
the Evolution of Tomato Fruit,” Science 289(5476):85-88.

5 Marc Levoy, 2000, “Digitizing the Forma Urbis Romae,” presented at Siggraph
Digital Campfire on Computers and Archeology, Snowbird, Utah, April 14.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

6

techniques for abstraction, representing and formulating archetypes, “nearest
neighbor” matching, and so on.

SOURCE: Items 1-3, 6, and 7 are adapted from Robert L. Constable, “Transforming the
Academy: Knowledge Formation in the Age of Digital Information,” PhysicaPlus, Issue 9,
http://physicaplus.org.il/zope/home/en/1185176174/trans_academy_en. Items 4, 5, 8, and
9 are adapted from Alan Bundy, “Computational Thinking Is Pervasive,” available at
http://www.inf.ed.ac.uk/research/programmes/comp-think/.

http://physicaplus.org.il/zope/home/en/1185176174/trans_academy_en
http://www.inf.ed.ac.uk/research/programmes/comp-think/

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

7

2. What Is Computational Thinking?

Most of the workshop’s discussions focused on exploring different aspects of what

participants thought about computational thinking. The presentation of topics in this
chapter is not chronological—throughout the workshop discussions, participants returned to
topics and ideas mentioned earlier . Thus, the presentation below seeks to organize the
discussions by theme rather than by order of presentation. Section 2.1 outlines an overview
of some of the intuitive notions of computational thinking held by different workshop
participants. Section 2.2 discusses computational thinking as a range of concepts,
applications, tools, and skill sets. Section 2.3 looks at computational thinking linguistically
(i.e., as a language) and explores the role and importance of programming as an essential
aspect of computational thinking as a primary and critical mode of precise expression.
Section 2.4 examines computational thinking from the perspective of automating
computational abstractions. Section 2.5 looks at computational thinking as a cognitive tool
set for certain kinds of intellectual endeavor. Section 2.6 explores computational thinking in
contexts that do not explicitly require the use of information technology as traditionally
understood. A related section (Section 2.7) explores the question of how and to what extent
computers per se relate to computational thinking. Section 2.8 examines the collaborative
dimensions of computational thinking. Section 2.9 presents views on what computational
thinking is not.

2.1 THE LANDSCAPE OF COMPUTATIONAL THINKING

In a 2006 article, Jeannette Wing, then a professor of computer science at Carnegie

Mellon University, discussed computational thinking as “a way of solving problems,
designing systems, and understanding human behavior that draws on concepts fundamental
to computer science.”6 Since then, Wing has assumed the position of assistant director of
the National Science Foundation Computer and Information Science and Engineering
directorate. From that podium, she has promoted the idea that as computation,
communications, and information become increasingly prominent throughout daily life,
computational thinking becomes more useful to the economic, intellectual, and social well-
being of everyone (Box 2.1). [Boxes and figures for each chapter are located at the end of
the chapter in this prepublication document. The final document will present boxes and
figures close to their call-outs in the text.]

Wing’s presentation at the workshop made prominent mention of the “shotgun”
approach to sequencing the human genome as a powerful example of how computational
thinking might be useful outside the traditional domain of computer science. The human
DNA sequence consists of 3.4 billion base pairs, and the determination of this sequence was
completed in 2003, in a significantly shorter time than originally estimated, through the use
of the shotgun approach. In general, the sequencing of a long DNA string can be

6 Jeannette M. Wing, 2006, Computational Thinking, Communications of the ACM, 49

(3):33-35.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

8

accomplished only by dividing the sequence into a number of short fragments, each of
which is sequenced and then assembled into the appropriate order .

In the shotgun approach, a long DNA sequence is randomly divided into many short
fragments, each of which can be sequenced. To reassemble the fragments, investigators
use overlaps between the ends of the fragments—fragments whose ends do not match
cannot be connected to each other . However , the presence of a match between fragment
ends does not guarantee that the two fragments in question should necessarily be joined,
and additional data are needed to resolve these ambiguities. To obtain the additional data,
the fragmentation process is repeated—since the division is random, it is likely that the spot
where two fragments were separated in the first fragmentation will in fact be contiguous in
the second fragmentation. This fact can be used to confirm or reject the match proposed
from the first round. Through a series of successive rounds of fragmentation and analysis,
the correct sequence can be determined. The algorithm used to analyze the data resulting
from this iterative process is widely known as a shotgun algorithm.

This example manifests several aspects of computational thinking. Algorithm
embodies the notion of a precisely formulated unambiguous procedure that is repetitively
applied. Search, pattern matching, and iterative refinement can also be seen in the
example, and the powerful idea of randomization as an asset in repeated fragmentation is a
particularly important aspect of computational thinking.

Drawing on their own intuitive notions of computational thinking, workshop
participants offered a number of additional examples of computational thinking in context.
For instance, when a device (computer , cell phone, or printer) malfunctions, a reboot is
often used to restore it to working condition. A person thinking computationally realizes
that by turning it off and restarting it, she can reset the internal state of the device to a
known and fresh state and allow the device’s internal processes to execute from that known
state. Second, information technology can help to process very large volumes of
information. A person thinking computationally realizes that data-intensive problems such
as sequencing DNA may be amenable to solutions based on algorithms and automation.
Third, information technology can often be used to help manage complexity in
understanding complicated problems. A person thinking computationally realizes that
computational modeling can help address and understand complex problems across varied
disciplines such as climate change, economic policy, and educational decision making.

Responding to the workshop focus on explicating the scope and nature of
computational thinking (with the implied goal of being more effective in imparting to
students the essentials of computational thinking), Uri Wilensky offered a caution—that “it is
not necessarily the case that the best way to enter into something is to enter it in the way
that an expert already understands it. ” For those in attendance at the workshop, he noted
that “if one is already an expert in computer science, it’s easy to forget what it’s like to
enter into the field.” He did not argue that the explication effort was wasted or
inappropriate, only that as a community “we should be careful about the process of bringing
a lot of people, in a widespread way, into computational thinking. We should do more than
present to students expert ways of thinking computationally—attention must be paid to the
developmental understanding of students.” Roy Pea made a similar point when he
cautioned workshop participants against focusing on the prototypes for computational
thinking provided by experts in the field, because such prototypes “may lead us away from
the professed goal of everyday computational thinking.”

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

9

2.2 COMPUTATIONAL THINKING AS A RANGE OF CONCEPTS,
APPLICATIONS, TOOLS, AND SKILL SETS

Over the course of the workshop discussion, several participants described

computational thinking as a collection of mental tools and concepts from computer science
that help people to solve problems, design systems, and understand human behavior . For
example, Wing drew the distinction between “metal tools” and “mental” tools, the former
being the hardware/software applications that help solve problems and the latter being
cognitive and intellectual skills that human beings can use to understand and solve
problems more effectively. They argued that these concepts feature prominently in
computer science but are not exclusive to the field.

Computational thinking was defined in a number of ways. These definitions fell into
several categories and are described (in no particular order) below:

• David Moursund along with several other workshop participants suggested that

computational thinking was closely related to, if not the same as, the original notions
of procedural thinking developed by Seymour Papert in Mindstorms.7 Procedural
thinking includes developing, representing, testing, and debugging procedures, and an
effective procedure is a detailed step-by-step set of instructions that can be
mechanically interpreted and carried out by a specified agent, such as a computer or
automated equipment.

• Peter Lee offered a definition of computational thinking as the study of the
mechanisms of intelligence that can yield practical applications by magnifying human
intelligence. Such a definition includes but is not equivalent to artificial intelligence,
which in his view generally consists of efforts to mimic human mental processes.
Rather , Lee argued, computational thinking is fundamentally about expanding human
mental capabilities through abstract tools that help manage complexity and allow for
automation of tasks. Andrew McGettrick supported this view, but went further in
saying that computational “thinking” had to involve actual capability and competency
with technological artifacts in addition to thought processes. Such an extended view,
he noted, would require computational thinkers to constantly immerse themselves and
invest in staying technologically current.

• Bill Wulf suggested that computational thinking was primarily about process. He
noted that other areas of science focus on physical objects, whereas computational
thinking focuses on processes and abstract phenomena that enable processes. Wulf
objected to the connotations of “computational” as focusing on numbers. Speaking
via videoconference, Peter Denning expressed a parallel sentiment, arguing that
computer science itself is the study of information processes and that computational
thinking is a subset of computer science.

• Dor Abrahamson saw computational thinking as the use of computation-related
symbol systems (semiotic systems) to articulate explicit knowledge and to objectify
tacit knowledge, to manifest such knowledge in concrete computational forms, and to
manage the products emerging from such intellectual efforts. He further argued that

7 Seymour Papert, 1981, Mindstorms: Children, Computers, And Powerful Ideas, New

York: Basic Books.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

10

a semiotic approach had embedded within it a philosophy of the relationship between
understanding and personal meaning and helps guide the construction of personal
meaning for these symbols.

• Gerald Sussman defined computational thinking as a way of formulating precise
methods of doing things. Computational thinking is about rigorous analysis and
procedures for accomplishing a defined task efficiently. Sussman pointed to the
importance of having precise language for methods and concepts—for this reason,
Sussman argues that computational thinking has an “underlying linguistic structure.”
For example, situations like "A happens before B" or "do this and then do that" are
captured by the general idea of a partial order , and there are techniques for
navigating partial orders and reasoning about them.

• Wing and Sussman suggested that computational thinking could be seen as a bridge
between science and engineering—a meta-science about studying ways or methods of
thinking that are applicable across the different disciplines. In this view,
computational thinking is the central element of the reasoning that takes places in
transitioning from the study of physical phenomena and the application of scientific
observation.

• Edward Fox emphasized the notion of handling and manipulating intangible
abstractions for problem-solving purposes at the core of computational thinking. Fox
defined computational thinking as “what humans do as they approach the world [that
is, their framing, paradigm, philosophy, or language] considering processes
manipulating digital representations (and (meta) models),” and hence all humans
engage in computational thinking to some extent already in their daily lives. Brian
Blake argued that computational thinking had to include representations,
visualizations, modeling, or meta-modeling. Uri Wilensky pointed out the historical
power of representational shifts and argued that, like other such shifts, computational
representations would enable greater modeling power and wider access to scientific
models. Janet Kolodner noted that computational thinking plays a role in the
manipulation of software in support of problem solving. Kolodner stated that “[a piece
of software can be] a tool that is being provided so that somebody can do
computational thinking and can do thinking in some domain, but there’s [also] some
kind of computational thinking they need to be able to do in order to manipulate that
tool to be able to use it for their domain.”

• Robert Constable would eschew static definitions of computational thinking—rather
than a finite set of skills and thought processes, computational thinking is an open-
ended and growing a list of concepts that reflects the dynamic nature of technology
and human learning, that combines elements of all the descriptions of computational
thinking listed outlined above such as “automating intellectual processes” and
“studying information processes,” among others. What makes computational thinking
especially relevant is that computers can execute our “computational thoughts” and
that “computers have become partners and collaborators” in discovery. He further
noted that the list of elements in the first paragraph of Section 1.2 is not merely a list
of examples of computational thinking. Rather , it is a partial list of important
intellectual concepts and elements that are part of the science of computing and of
digital information.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

11

Computational thinking is careful reasoning about the methods of doing things. It’s clearly
related to, but not identical with, mathematical thinking. Both [computational thinking and
mathematical thinking deeply] are involved with abstraction, and reasoning with simplified
models.

—Gerald J. Sussman

2.3 COMPUTATIONAL THINKING AS LANGUAGE AND THE IMPORTANCE OF
PROGRAMMING

A number of workshop participants advanced the idea that computational thinking

could be better understood as a fundamental intellectual skill comparable to reading,
writing, speaking, and arithmetic. Functionally, these fundamental skills are all means of
describing and explaining complex problems and situations to others, and computational
thinking serves the same purpose. In other words, computational thinking is comparable to
other basic cognitive abilities that the average person in modern society is expected to
possess.

One participant quoted Niels Bohr, who said, “Science is not to tell us about the
universe, but to tell us how to talk about the universe.” Along these lines, computational
thinking is another language (in addition to written and spoken language, science, and
mathematics) that humans can use to talk about the universe and the complex processes
within it.

Roy Pea argued that “as soon as we think about the origins of computational
thinking and computational literacies, programming has been at the heartland of the
definition and the abstractions that are created as step-by-step algorithmic procedures.”
Ursula Wolz supported the view that computational thinking is as essential a skill as reading,
writing, and other basic language arts skills, pointing out that “programming is a language
for expressing ideas. You have to learn how to read and write that language in order to be
able to think in that language.” Mitchel Resnick concurred, arguing that “computational
thinking is more than programming, but only in the same way that language literacy is more
than writing. They are both very important. Yes, it’s more, but don’t minimize
programming just because it’s more.” He went on to say that programming is a particularly
important form of expression, and that “programming, like writing, is a means of expression
and an entry point for developing new ways of thinking.” Eric Roberts also supported the
idea that programming is essential to computational thinking and pointed out “a misguided
assumption—that just because programming can be badly taught or that it can be difficult
and deter people, it needs to be avoided entirely.” (Box 2.2 describes the thoughts
expressed in the 1999 report Being Fluent with Information Technology on the closely
related question of the role of programming in imparting FITness.) [Boxes and figures for
each chapter are located at the end of the chapter in this prepublication document. The
final document will present boxes and figures close to their call-outs in the text.]

Andy diSessa emphasized the notion of literacy as a social construction and noted
that an effort to teach computational thinking (or rather , computational literacy, in diSessa’s
terms) to everyone is, in large part, a social problem. Moreover , it is the milieu of today’s
society that encourages and/or demands that citizens have this literacy. Owen Astrachan
argued that “computational literacy will allow civilization to think and do things that will be

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

12

new to us in the way that the modern literate society would be almost incomprehensible to
preliterate cultures, but it’s a different kind of literacy than what it means to be familiar . By
computational literacy, I do not mean a casual familiarity with a machine that computes.”

Gerald Sussman built the “computational thinking-as-basic-language” metaphor by
citing the process of composing poetry as an exercise in computational thinking. A poet’s
task or problem is to produce a mechanism that induces an emotion in the reader of the
poem. “The skillful poet takes pieces that have parts of that emotional state, puts them
together in the right way—there are going to be bugs and there are going to have to be
places where you make interfaces and all that sort of stuff— so as to make a larger
structure that has that property.” Sussman went on to cite an essay by Edgar Allen Poe that
described the process of composing poetry as an algorithm.

Alan Kay was less enthusiastic about the “computational thinking-as-language”
metaphor . Although acknowledging the utility of computational thinking as a language for
describing certain aspects of the universe, Kay noted that all human beings have an innate
capacity for verbal language, but that the same cannot be said for written language,
science, and deductive mathematics, because these are not found in every culture or
society. This point suggests that whatever computational-thinking-as-a-language might be,
human beings will not learn computational thinking in the same way that they learn to
speak. On the other hand, he also noted that a powerful aspect of computational thinking
entails the ability to create a language well adapted to a personally relevant purpose—and
indeed that this ability could be taught to students.

Edward Fox suggested that computational thinking does have a long historical tail.
“Computational thinking is innate in the human species,” he said, and “through telling
stories our ancestors modeled and represented reality and they passed that on to other
people and they enriched those models to carry out exploring, discovering, and sustaining
life.” Today, exploration of and discovery in digital information are central activities of
human life. Computers enable modern discovery and allow humans to access and organize
information in a way that has not been done before. Despite its novelty, according to Fox,
accessing digital information is “still a part of this modeling and representing, something
that we do uniquely and have newer ways to explain and enrich.”

2.4 COMPUTATIONAL THINKING AS THE AUTOMATION OF ABSTRACTIONS

A number of workshop participants supported the claim that computational thinking

focuses on the process of creating and managing abstractions, and defining relationships
between layers of abstraction. Robert Constable pointed out that although physics and
mathematics are also centrally concerned with abstraction, what is different in
computational thinking is that the layers of abstraction are tightly connected in ways that in
the natural sciences cannot yet be connected.

In this view, computational thinking is a tool for explaining and representing
complexity through automation. Although mathematics and physics are also centrally
concerned with using abstraction to manage and control complexity, computational methods
add another dimension to controlling complexity—that of automation. Peter Lee argued
that computational thinking is about “magnifying people’s intelligence through automation
and problem solving, as well as managing complexity.” Others pointed to the role of
modeling and simulation in enabling automation of the management of complexity.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

13

To complement this view, Andy diSessa argued that abstractions must be paired
with grounding if people are to understand the significance of those abstractions. In
diSessa’s words, “Abstraction has to connect with their concerns, whether they are menial
or whether they are grand. It has to be grounded in people’s beliefs and feelings some way
or other .” Owen Astrachan echoed this point, saying that “without the grounded examples,
we’ll be talking too abstractly, which might work in a room full of abstract thinkers, but it's
not going to work in rooms full of less abstract thinkers because they need to see what they
are really going to do.” Ken Kahn made a related argument that computational thinking
provides a concretization—the creation of something concrete and tangible—of subjects that
are typically dominated by abstract concepts. Kahn felt that an example of such
concretization is computer games— “They are virtual, of course, but they feel very concrete.
The important idea is that there is a one-to-one mapping from these concrete things to
computational abstractions that are much more difficult for most people to grasp.” Wilensky
concurred and described how students interacting with models or participatory simulations
of disease spread developed with NetLogo learn to understand logistic growth of infection
as an emergent pattern that results from the concrete actions of individuals.

2.5 COMPUTATIONAL THINKING AS A COGNITIVE TOOL

David Moursund saw computational thinking as how to think about tools, a view

inspired by Donald Norman and David Perkins. In 1988, Norman wrote The Design of
Everyday Things8 which talks about “the design of everyday objects and affordances—not
just physical capabilities of the actor , but also their goals, plans, and values, and so on.” An
example of affordances created through technology innovation is mass communication
through the creation of the printing press, radio, television, and so on. Information
technology and the computer are a set of new tools with affordances of their own, and
Moursund noted that realization of affordances depends on the education, training, and
experience of the user as well as the design of the tool. Some tools, such as a word
processor , require more formal training and skills in order to access the affordances they
offer . Others, through their very design or through imitation, are simpler to manipulate and
may not require formal training; examples might include telephones or video games.

In the early 1990s, David Perkins wrote about the concept of “Person Plus.”9 In the
Person Plus model, three dimensions feed in to augmenting team problem solving (Figure
2.1). Moursund identified these three dimensions as “tools that expand or extend mental
capabilities,” such as reading comprehension or mathematical skills; “tools that extend
physical capabilities,” such as a car , a telescope, or a rake; and finally, “education and
training” that allow one to effectively utilize tools. Moursund’s final component in the model
is team problem solving. He stated, “When I talk about problem solving, problem solving is
always a team activity. The team might have a person on it, but the team has…whatever
that person has learned, the culture they grew up in, the formal/informal education, and so
on. So problem solving is always a team-type activity.” This activity usually includes aid
from physical and mental tools as well as education. Moursund believes that “computational

8 Donald Norman, 1988, The Design of Everyday Things, New York: Basic Books.
9 David Perkins, 1992, Smart Schools: Better Thinking and Learning for Every Child,

New York: The Free Press.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

14

thinking and computers fit into both categories [of tools].” Both formal and informal
education can help people utilize these tools more effectively.

Morusund argued that computational thinking fuses the concepts of affordance and
person with respect to information technology and computers. He spoke about the trend of
increasing complexity and performance power in each generation of computers and how
this trend offers new affordances and more sophisticated problem solving: “You can have a
stick and you can weed your first crops with a stick. If you get a hoe, it’s a much better
tool. But then, with better tools, we move beyond the low-level augmentation or
amplification, as it’s usually called. If you get good enough tools, then you can go shooting
off to the moon and other places.”

Moursund further noted “What I see in the computer field is that there are oodles of
tools where it doesn’t take any formal education to learn how to use them….So when we
talk about computational thinking, we have oodles of tools which are just part of our
everyday society and life, and which people can learn to use at a level which is personally
satisfying, extends their capabilities and so on, and you don’t have to go to school to learn
them. That seems to me like a pretty important idea.” He went on to say that in many
aspects of computing and computational thinking, many people are learning on their own
and learning from each other and focusing on “learning things that they want to do and
need to do versus the deeper level of learning we’re looking for ”

Roy Pea concurred—“If you actually look at what people do when they're doing
computational thinking, as an ethnographer , you see them immersed with a whole set of
tools, they're constantly thinking about the things that have particular properties,
affordances—they're working with colleagues in a particular way. They're getting feedback
from a whole host of resources there.”

If you give everybody a calculator , math doesn’t go away. Thinking and doing are
needed to represent and help solve problems. If you get better tools, you can do better
at it. What the computer is doing is giving you the better tools, dealing with harder
problems.

—David Moursund

2.6 COMPUTATIONAL THINKING IN CONTEXTS WITHOUT PROGRAMMING
A COMPUTER

Marcia Linn and several other participants discussed computational thinking as a way

of approaching complex problems that permeate everyday mental activities made necessary
because of the ubiquity and increasing omnipresence of computational tools throughout
modern life. This way of thinking involves using methods from computer science such as
debugging, search algorithms, and test cases to address everyday problems involving
technological resources. Put differently, the affordances offered by modern information
technology require reasoning skills such as debugging, test cases, and logical skills to solve
everyday problems.

Linn pointed out that even very young children appreciate the Internet and have a
sense of search, and they often take advantage of electronic devices such as cell phones

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

15

and computers to access information they want. When 2-year-old Ben wanted to explain
how a trapeze works to his friend, he demanded that his mother show his friend a trapeze
on her cell phone. He liked the first example but wanted her to try some of the other search
results. After a few minutes the battery of the phone died. Ben told his mother to turn the
phone back on. He was frustrated when she tried to explain that it would take time to
charge the battery. Ben already understands the power of the Internet and the nature of
keyword search. Like many of us, he is confused about the limits of electrical power .

At the other end of the age spectrum, Linn used the example of retirees taking
advantage of social networking opportunities to plan trips. Jack reported that he upgraded
his computer to use sites like Trip Advisor to find hotels. He gained ability to select sites that
primarily serve leisure travelers rather than business travelers. He has begun to analyze the
sites that support advertising—and worries that they promote the advertised products. He
prefers sites where the qualifications of the reviewers are available. He has developed a
theory about who posts on these sites and has started to realize that many people really do
not articulate their criteria. Jack is using his debugging skills.

Joshua Danish presented an example of young students engaging in computational
thinking concepts without using computers in a project on honeybees—specifically to
understand and represent the process honeybees use to collect nectar for honey. This
process involves a beehive sending out scouts to locate flowers with nectar , which then
return to the hive and do a “dance” to communicate the location of the nectar to the other
bees. Other bees then return to the specified location to harvest the nectar .

Danish said, “Here [in Figure 2.2] is a student’s representation in four panels of that
process, and it’s actually quite nice. Now, there are limitations to that. But we’re starting to
see some of the skills and the resources—and this is a 7-year-old’s drawing—and when
they’re actually starting to be quite capable of reducing and extracting that process and
describing it for us.”

In the first phase of activity, students engaged in an individualized “creation of
representations”—that is, each student drew his or her own detailed picture of a single bee
(subject to certain minimum requirements, such as having three body sections and including
the proper names of key parts of the bee) and also a series of four panels (Figure 2.2)
depicting the process bees use to find nectar , collect nectar , and then communicate the
location of the nectar to the hive.

Next, the children were asked to engage in “participatory modeling” of the bees
collecting nectar , an idea first introduced as such by Uri Wilensky and Mitchel Resnick.10
Children produced a skit in which they represented flowers and bees and proceeded to
demonstrate how a bee goes about collecting nectar . Danish argued that this activity allows
students “to leverage their ability and make sense of talk and gesture and body position as
a way of refining their model and understanding the parts of it that they may not have
formal language for yet.”

For example, the students were able to refine their models through repetition,
“debug” their models through collaboration, and explore sequencing. Danish described a
boy representing a bee that had just checked for nectar—his peers did not actually see him

10 Uri Wilensky and Mitchel Resnick, 1999, “Thinking in Levels: A Dynamic Systems

Perspective to Making Sense of the World,” Journal of Science Education and Technology
(1):

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

16

using a proboscis, and so “they were challenging his model, saying, we don’t see the part of
the bee that’s important for that part of the process.” The teacher is also able to introduce
the concepts of sequencing and algorithms by engaging in a dialog with the student:

T: All right, well, there isn’t any nectar at that flower . So if you were a bee, would
you stay at the flower?
S: No.
T: What would you do?
S: I would go back, and not do a dance because I don’t know where to find nectar .

According to Danish, this exchange illustrates how the student engaging “in a

context where he’s able to talk about the sort of if-then choices of the algorithm that the
bees follow as they go back collecting nectar . And the can then be phrased in a way that’s
incredibly relevant to him.”

In the third phase, students engaged in participatory simulation in which they had to
instruct other children to carry out the search for nectar as the bees would. As they tried to
act the instructions provided by the scout bees, the children engaged in a real-time
debugging process by updating their instructions as they went along. This phase forces the
students into “thinking about the implications of their modeling choices.” “As these
students are running around and not quite finding the nectar , it’s easy for this boy to say,
it’s by the red rake. So there’s some online monitoring of whether or not his instructions or
his program were successful. But then there’s also some retroactive consideration ‘some
nice reflection on whether that model did the job. So the student’s then able to say, ‘I
should have said by the handle of the rake. ’”

Only in the fourth phase did students encounter any actual computer technology—
with the help of an instructor , students modeled the process and predicted outcomes using
a program called Bee-Sign, developed to provide a simulation environment for students to
model bee searches.

A second example of computational thinking in a non-IT context was provided by
Ursula Wolz, who reported on an effort to teach to middle school students computational
thinking skills through the journalistic use of interactive media. She described the project as
focusing on a “nondidactic collaborative model of problem solving.” Journalism provides an
attractive context for students who do not consider themselves technically inclined.

Wolz argued that journalism mirrors many of the processes involved in working with
computers, especially programming. “In journalism, one must pitch a story, research it,
interview, collect data, shoot video, write, edit, send it to the editor , re-write, add sidebars,
resubmit, fact check, debug the story, and loop until the editor signs off on it. If one
assumes the computer acts as an editor , then one can take note of a very familiar series of
activities involved in computational thinking.” The students had news teams, supervised by
a teacher and guidance counselors, that worked to produce an online magazine. The
students researched, interviewed, and wrote stories, and they created video and animation
in Scratch. They also successfully used the computing environment used to support the
course to collaborate, write, edit, and publish multimedia stories as part of the journalism
process.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

17

A third example of computational thinking without computers was provided by Tim
Bell, who described the Computer Science Unplugged Project.11 His talk included a couple of
illustrations:

• User interfaces. Students examine the interface provided in a digital watch. In

many digital watches, a button is included that turns the watch face from a clock
to a stop watch, and another button that starts and stops the stop watch.
According to Bell, “Suddenly the kids realize that this is a very simple interface,
which they probably didn’t even think was an interface, on their wrist.” This
realization empowers them to recognize interfaces in other objects and apply
learned concepts when interacting with those objects. User interfaces are an
important element of computational thinking because they create a well-defined
decoupling between the parts of the system that interact directly with users and
the rest of the system. User interfaces thus afford a structured and systematized
method of entering input into a program that in turn affects its behavior . User
interfaces also afford users such methods for seeing program outputs.

• Routing. Each student wears a t-shirt of a different color (Figure 2.3).
Corresponding to each color are two pieces of fruit and every student except one
starts with two pieces of fruit. One student starts with only one piece of fruit of
the appropriate color . The goal is to have both pieces of fruit end up in the
hands of the child with the corresponding color shirt, that is, “the oranges go to
the girl with the orange t-shirt and the green apples go to the girl with the green
t-shirt” , and so on. The constraint on any method of passing fruit is that each
student can only pass something to someone who has an empty hand, and he or
she can only pass something to a neighbor . This puzzle is similar to the kinds of
problems that a computer scientist might face, and students can experiment with
different routing topologies. Routing is an important element of computational
thinking because it encapsulates the idea of how information can be passed in
different paths through intermediate nodes to a specified final destination.

A third example of computational thinking without the use of technology per se was

provided in a personal anecdote from Owen Astrachan. He described different solutions to
a word puzzle in which the problem solver must change a given 5-letter word (e.g., “white”)
to another 5-letter word (e.g., “house”) by making only a single letter change at each step,
subject to the constraint that each intermediate word must also be a real dictionary word.
Astrachan’s solution was based on making a graph and doing a breadth-first search through
that graph. His solution required 16 steps. His brother , an English major , solved the
problem in 15 steps, apparently without using computational thinking. Astrachan then
asked why, and saw that his brother’s solution was based on the fact that his brother’s
dictionary had more words in it—“sough” was in his brother’s dictionary but not in his. With
the addition of that word to Astrachan’s solution, he was able to solve the problem in 14
steps. Astrachan said that this story illustrates computational thinking in action and

11 Tim Bell, Ian H. Witten, and Mike Fellows, 2006, Computer Science Unplugged: An

Enrichment and Extension Programme for Primary Aged-Children. Canterbury, New Zealand:
Computer Science Unplugged.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

18

computational thinking in context, and helps to demonstrate “what's going on with people
around us who don't think computationally.”

Allan Collins argued that one key feature of computational thinking is
representational competence, which he described as the effective application of
computational means of representation of knowledge. The illustration Collins offered was a
low-tech experiment in developing representational competence in fourth graders who were
asked to “find representations for the heights” of various fast-growing plants. The children
were broken up into several groups, and each group of kids would try to come up with its
own representations. While there were a number of ideas considered, the class eventually
decided to “use a bar graph with small ranges of plants. . . like from 10 inches to 12 inches,
and they would have a bar for each two inches.”12

And then in terms of the survey results that we got, the majority. . . said the most
important thing they learned was programming and video editing. And half said
that their best work was in programming. And unlike some of the kids that Alan and
Roy were talking about, these are working-class children who would not necessarily
have access to this level of computing unless it was through a program like this.

—Ursula Wolz

As computation came in, it started producing all sorts of new forms of
representation, both structural forms and process forms, particularly the
dynamic process forms. . . things like production rules and frames and semantic
networks and the constraint satisfaction systems were all new ways to think
about representing knowledge. . . . And so my claim is that one of the things
that we should be concerned about is how to get this kind of representational
competence. We need to start thinking more seriously about how we can
convey some of that power .

—Allan Collins

2.7 THE ROLE OF COMPUTERS AND TECHNOLOGY

An obvious question arises in the consideration of computational thinking. How and

to what extent do computers per se relate to computational thinking?
A first point is that the term ”computer” can refer to a mechanical or an electronic

computer , or to a human computer (indeed, the first connotation of the word ”computer”
was that of a human who performed mathematical computations). So a computer is an
essential aspect of computational thinking to the extent that it is an agent that can
deterministically interpret a set of instructions in an unambigous manner .

12 Collins also cited the work of Rich Lehrer and Leona Schauble and their work with

really young kids getting them to think about how to represent distributions and statistical
reasoning. Richard Lehrer and Leona Schauble, 2004, “Modeling Natural Variation Through
Distribution,” American Educational Research Journal, 41(3):635-679.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

19

A more common intepretation of the question relates to whether or not a competent
computational thinker is necessarily facile with the use of modern information technology to
solve problems and to do other useful things. Workshop participants observed that
information technology has advanced dramatically throughout its history, and rapid change
is likely to characterize future information technology. Moreover , computers and
computation will become increasingly important to society and across a number of
disciplines. As one participant put it, “I think we are here today to think about what
everybody should know” in the face of such rapid change.

Many participants argued that the ability to develop facility with new technologies is
a part of computational thinking. Computational thinking in this view involves finding the
right technology for a problem and applying the technology to resolve the problem. This
might require learning how to use the appropriate technology, debugging the solution, and
communicating the outcome. For example, to represent a complex phenomenon such as an
ecosystem, the moves in a chess game, or the trajectory of a baseball, the computational
thinker might explore alternative technologies, select a candidate, and test its effectiveness.
This skill is essential in undergraduate programs, useful in everyday life, and growing in
importance in precollege courses. In this view computers and other computational devices
enable computational thinking.

One participant argued that what makes computational thinking especially relevant is
that computers, whether mechanical or human, are the agents for executing “computational
thoughts,” and computers have become partners and collaborators in discovery. Further ,
unlike household appliances or an automobile, computers are relevant to a vast number of
different applications, such as searching for information, developing a budget, tracking
individuals, composing music, and so on. While not disagreeing with this sentiment, others
at the workshop argued strongly that because computers are not restricted to mechanical
computers but instead can refer to human agents, computational thinking becomes relevant
to individuals outside the context of mechanical computers—and thus to a much larger cross
section of society.

2.8 A COLLABORATIVE DIMENSION TO COMPUTATIONAL THINKING

Modern information technology is at least as much about dispersed, real-time

communication as it is about automation. Edward Fox noted that “what we see happening
a lot today, especially with the Web and multimedia and other things, is that the
[computational thinking] reflection takes place with the help of other people, too. We can
share videos and we see what other people did and we comment on those. We have all this
Web 2.0 and so forth, where these become social processes, and debugging becomes part
of our society, as well as of solving our problems.”

Building on this notion, a number of participants suggested that computational
thinking could be regarded as a group phenomenon as well as an individual one. That is,
groups, too, can engage in computational thinking to develop representations, debug
processes, and so on, resulting in a collective process of discovery that is richer than that of
any single individual. Wolz argued this point when she said that “one of the things that
annoys me is when we talk about some of the great discoveries that happened by an
individual—they never happened by an individual. There is a huge body of literature
emerging, for example, in terms of what Leonardo did and who was around, and the same

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

20

thing about Newton....We have to keep reminding ourselves that it isn’t about ownership.
It’s about the community and the culture that’s around you that allows you to have the
ideas.”

Allan Collins related collaboration to the notion of computational thinking as a
fundamental skill analogous to reading and writing literacy. He pointed out that developing
reading and writing literacy is not simply a matter of technical skills, but also arguably
entails a social community. In Collins’ words, “We learn from the company we keep. . . .
People will learn to read and write if the people they admire, care about, the communities
they belong to, are readers and writers.” Thus, he argued, achieving a comparable literacy
with respect to computational thinking will require the fostering and development of
communities that value computational thinking—some of which exist today, though not in
large numbers and not widely accessible.

Kevin Ashley introduced an example of collaborative computational thinking from the
legal field. Over time, the legal community performs testing and adaptation of laws in
response to changing social contexts. He pointed out, “Often the hypotheticals are informed
by changes in societal values over a period of time; this is dynamic. The old law has to be
reevaluated, reinterpreted in the context of the changing social values. The hypotheticals—
the specific examples that they try out to see how that would be dealt with under the
proposed rule and whether that is a good outcome or not in light of those values—are the
dynamic engine for adapting the rules and interpretations to the new circumstances.”

I mean, in some sense, I think the message that Roy [Pea] is delivering, that I,
[and] Mitchel [Resnick] are delivering, is that we need to start thinking about how to
create communities of people who care about computational thinking and who are
doing it.

 —Allan Collins

2.9 WHAT COMPUTATIONAL THINKING IS NOT

Several participants suggested that it might be easier to articulate what

computational thinking is not. For example, Robert Constable argued that computer
literacy—traditionally seen as the ability to use specific programs or features of given
computer systems such as Word or Excel—does not demonstrate the ability to engage in
computational thinking. (By contrast, he noted that one can know a great deal about
computational thinking and computing concepts without knowing much about computers
beyond how to get on the Internet and use an Internet browser .)

Along with a number of other workshop participants, Gerald Sussman argued that
computational thinking was also not equivalent to computer science. Alhough
computational thinking and computer science share some elements, he said that
“computational thinking is a certain part of computer science. Mathematicians talk about
mathematical thinking. Statisticians talk about statistical thinking. I think that computer
scientists should talk about computational thinking. ” To illustrate, he said that “scientific
thinking is about apples and oranges and how they may be different or the same.
Mathematical thinking is about spheres and where they have areas and volume and the fact
that they may involve a particularly high number of dimensions. Computational thinking is

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

21

about how a group of people can cut and share an apple so that each person feels he or
she got a fair share of the apple.”

Other participants felt that computational thinking was the outcome of a natural
evolution in our understanding of computer science. For example, Peter Denning suggested
that computational thinking is not the same as previous conceptions of computer science,
but rather another instantiation of the discipline (Box 2.3). [Boxes and figures for each
chapter are located at the end of the chapter in this prepublication document. The final
document will present boxes and figures close to their call-outs in the text.]

Larry Snyder noted that computational thinking was not the same as fluency with
information technology (FIT)13 (Appendix C), although they do share many commonalities
(Box 2.4). For example, many of the features often ascribed to computational thinking are
also part of a fluency curriculum including both concepts and capabilities. These concepts
include algorithmic thinking, managing complexity, debugging, thinking technologically,
universality, and so on. Indeed, he suggested that the primary difference was the fact that
FITness includes a skills component, which is designed to enable individuals to use common
current applications. By contrast, computational thinking tends to put less emphasis on
specific technical skills in favor of broad problem-solving abilities.

Snyder also called attention to a philosophical evolution regarding computing-related
teaching. The FITness report was published in 199914, when it was controversial to teach
conceptual material regarding information technology to non majors. Snyder argued that
today, such teaching is routine, at least in 4-year university programs. He thus proposed
the following sketch for this philosophical evolution:

• The general public is uninformed about and indifferent to information technology.
• The general public recognizes the need for computer literacy—how to use a

computer—a necessary skill as computers begin to penetrate into everyday life.
• The general public begins to see the limitations of skills-only training, which leads to

a desire for FITness—fluency with information technology—that exposes citizens to
the essential concepts and capabilities of information technology. The skills of
FITness are gradually de-emphasized as the citizenry learns to pick up without
formal instruction the skills needed to use computer applications.

• The general public is increasingly exposed to and literate with the skills of how to
use information technology, thus eliminating the need for much formal instruction in
skills. Computational thinking, which to first order is comprised of FITness without
the skills component, becomes the emerging focus of formal education.
Computational thinking then expands the array of concepts and capabilities beyond
those included in the original 1999 formulation of FITness.

Others saw computational thinking as a way of thinking that is qualitatively distinct

from fluency and emerging across a broad array of disciplines. The ubiquitous nature of

13 NRC, 1999, Being Fluent with Information Technology, Washington, DC: The

National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482.
Accessed December 28, 2009.

14 NRC, 1999, Being Fluent with Information Technology, Washington, DC: The
National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482.
Accessed December 28, 2009.

http://www.nap.edu/catalog.php?record_id=6482
http://www.nap.edu/catalog.php?record_id=6482

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

22

computational tools impacts all aspects of modern life and requires people to adopt new
modes of thinking to use these tools effectively. These modes of thinking are emerging not
just in computer science but in every field.

I would like to propose that this is actually a three-dimensional problem. We have aspects
of computational thinking or computing, we have the other disciplines that we are talking
about connecting with, and we have pedagogy, the different levels and so forth. We are
trying to populate a three-dimensional matrix with the best situations in each of these
different settings and figure out which ones are the ones that work.
 –Edward A. Fox

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

23

Box 2.1 Who Is “Everyone”?

Workshop participants offered a number of definitions of “everyone.” Many of the

examples of computational thinking offered were directed at scientists and engineers. A
few examples were connected to the needs of professionals in nontechnical fields, such as
archeology and law. Thus, by implication, computational thinking was thought to be
relevant to a broad swath of individuals with college and postgraduate educations.

Others discussed the possibility of computational thinking for K-12 students. Of
course, K-12 spans a broad range. High school students take courses that address some
topics that involve the same computational-thinking-related activities found in
undergraduate courses. K-8 instruction is the focus of modeling and simulation
environments such as Scratch and LOGO, and the NetLogo modeling and simulation
environment is used primarily in middle and high schools as well as in university courses.
Curricular innovations such as the honeybee example of Danish (see Figure 2.2) illustrate
the possibilities.

Participants did not explore the relevance of computational thinking to noncollege
educated adults in any detail. (Hoffman did recount a tale of a group of thieves that
attempted to steal a large piece of construction equipment. While the thieves prepared for
most of the basic logistics surrounding the crime, they did not ultimately understand the
computational–thinking-based technology at work in the system, and their efforts were
ultimately thwarted. In particular , several men attempted to steal a piece of Caterpillar
construction equipment by loading it on a truck to haul it away. The equipment had an
active condition-based maintenance system within it broadcasting its exact location and
condition as the thieves attempted to run off with the machine. They did not get far .) This
topic will be explored further in the committee’s second workshop.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

24

Box 2.2 The Role of Programming in FITness

The 1999 NRC report Being Fluent with Information Technology addressed the role

of programming in achieving fluency with information technology (what that report called
FITness). The report defined programming as “the construction of a specification
(sequence of instructions or program) for solving a problem by an agent other than the
programmer [Programming] entails “decomposing the problem into a sequence of
steps and specifying them sufficiently precisely, unambiguously, and primitively that the
interpreting agent, usually a computer , can effectively realize the intended solution” (p. 42).

Computer programming in a standard programming language meets this definition,
of course, but programming arises in many other cases in which the agent is a human and
the language is English. Giving directions to soccer players to find a particular field in a city,
especially one not identifiable by numeric street/avenue coordinates, constitutes
programming by this definition. A player is the agent interpreting or executing the
instructions. Recipes with precise quantities of ingredients and precisely described
preparation and cooking steps are programs executed by cooks. Toy manufacturers write
programs, called assembly instructions, for parents to follow, and the Internal Revenue
Service (IRS) writes the program that taxpayers follow for deductible IRA contributions.

Critical to the programming enterprise is specification that meets the conditions
"precisely" and "primitively."

• "Precise" specifications are essential to provide assurance that the agent can

determine which actions are to be performed and in what order , so that the intended
result is achieved. Avoiding ambiguity is obviously crucial, but even seemingly
unambiguous commands can fail. For example, "turn right" fails if the soccer players
can approach the intersection from either the east or the west, and so "turn north" is
preferred. Similarly, "beat" and "fold in" are not synonyms for "stir" when combining
ingredients, and so successful recipes use precise terminology selected with great
care. An important nontechnology advantage of programming knowledge is that the
need for precision can promote precision in everyday communication.

• "Primitive" specifications are essential to provide assurance that the steps to be

performed are within the operational repertoire of the executing agent. The
programmer may understand the task as "pi times R squared," but if the executing
agent doesn't know what "squared" means or how to accomplish it, then the
programmer must express the task in more primitive terms, perhaps revising it to "pi
times R times R." For many taxpayers, the word "qualifying" in the IRS's instruction
phrase "subtract qualifying contributions" would likely fail the test for primitiveness,
because they would not readily understand what the term means.

Although programming can be as simple as giving a few commands—preheat oven

to 350 degrees, combine dry ingredients, stir in eggs, press into greased loaf pan, bake for
20 minutes—most solutions require the use of conditional instructions and repetition of
groups of instructions.

Conditional instructions are those that may or may not be performed, depending on
the input to the program. Repeated instruction execution is a second essential

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

25

programming construct, since it allows a program, for example, to process any number of
data items rather than just a fixed number. In addition, FITness also requires experience
with functional decomposition and functional abstraction. These are the powerful
mechanisms used by programmers to solve large problems (functional decomposition) and
to reuse their earlier programming efforts (functional abstraction).

Finally, the 1999 report argued that while FITness does imply a basic programming
ability, that ability need not be acquired in using a conventional programming language.
For example, certain spreadsheet operations and advanced HTML programming for Web
pages, among others, demand an understanding of enough programming concepts that
they can provide this basic programming experience. Such applications will often yield more
personally relevant opportunities to learn programming than programming in a conventional
programming language.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

26

Box 2.3 Great Principles of Computing

In 2003, Peter Denning initiated the “Great Principles of Computing” project, whose

purpose is to express the activities of computer science in a framework that is similar to that
which guides scientists in other domains in expressing what it is that they do. During the
workshop, Denning said that he and his colleagues are very interested in “the fundamentals
of the field,” the things that are “timeless and. . . also illustrate the depth and richness of
the discourse that we have built up in computing over the years.” Denning’s Great
Principles of Computing break down into seven categories: computation, communication,
coordination, recollection, automation, evaluation, and design.

Denning’s framework portrays computer science as a combination of engineering,
mathematics, and science. During the workshop, Denning argued that a legitimate science
is based on “knowledge, experimental methods, reproducibility, surprising predictions
complemented by performing art, and studies of natural objects,” and hence that computer
science should be included under this rubric. He acknowledged that “there has always been
controversy about whether computer science studies natural objects,” but expressed the
belief that “other fields are now accepting that information processes are part of the basic
aspects of nature.” He further suggested that this acceptance stems from evolving the
definition of computer science away from a strict focus on computing machines—“We are
coming to see computation as the principle and the computer as the tool. Instead of the
computer being at the center of what we study, computation is at the center of what we
study. That shift in perspective allows us to see computation in nature.”

I know some people have been saying things like, computational thinking is a new way to
define computer science. Computational thinking is a part of computer science, but is not
the whole story.

—Peter Denning

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

27

Box 2.4 On the Relationship Between Computational Thinking and Fluency With Information
Technology

A person who is highly capable of computational thinking—a computational thinker—

is one who has adopted the thinking habits and reasoning methods of computer scientists.
A person who is fluent with information technology is one who has adopted a specific menu
of facts, concepts, and thinking habits of computer scientists. In this sense, computational
thinking is broader than fluency.

On the other hand, because the fluency menu includes algorithmic thinking and a
variety of intellectual capabilities such as sustained logical reasoning and debugging, there
is tremendous overlap between computational thinking and fluency. When discussing
specific topics (as opposed to levels of understanding of a topic), there are strong
similarities between the intellectual approaches embedded in each. Both emphasize
abstraction, algorithmic thinking, problem solving, logical reasoning, levels of abstraction,
universality, debugging, technological point of view, representations, and so on. Such strong
similarities are why the knowledge needed and acquirable as “basic computational thinking”
would likely approximate what is known by a person fluent with information technology.

The primary difference between computational thinking and fluency is in focus. In
one view of this difference, the primary emphasis of pedagogical efforts in fluency is quite
clearly on the general population, and there is relatively little emphasis on its applicability to
advanced topics of study. By contrast, computational thinking is believed to be valuable
across the board, both for the everyday citizen and for the advanced professional. Indeed,
many of the examples of computational thinking that advocates invoke are derived from the
application of computational thinking in service of these advanced professionals in a variety
of problem domains. Another view of the difference between computational thinking and
fluency sees computational thinking as emphasizing conceptual understanding and fluency
as emphasizing applications across a broad range of topics and problem domains.

Another difference is that whereas fluency prescribes a variety of skills that enable a
citizen to use certain computer-enabled devices daily, computational thinking is not
concerned at all with such skills—such skills are assumed. Fluency does include a set of 10
concepts about computing and 10 intellectual capabilities that include many of the habits of
mind often captured in descriptions of computational thinking, but an important purpose of
including these concepts and capabilities is to support lifelong learning about computing.

Computational thinking and fluency should not be placed in opposition to each other ,
though they are definitely not the same thing. Computational thinking is a grand vision in
which people acquire the thinking habits of computer scientists commensurate with their
levels of education; fluency, though not originally formulated this way, can be seen as a
practical implementation of computational thinking for all citizens. This difference reflects
the differing origins of the studies involved—the Being Fluent report and its characterization
of fluency with information technology emerged from responding to a request for
recommendations on what the public should know about information technology, while the
present report on computational thinking emerged from a vision of how beneficial wider use
of thinking like a computer scientist would be.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

28

Figure 2.1 Perkins on problem solving. ORIGINAL SOURCE: David Perkins, 1992, Smart
Schools: Better Thinking and Learning for Every Child, New York: The Free Press.
Adaptation from David Moursund (workshop presenter), University of Oregon.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

29

Figure 2.2 A dance of the bees. An elementary student’s four-panel drawing modeling a
complex sequence—the process bees use to communicate the location of a viable source of
nectar . SOURCE: Joshua Danish, Indiana University.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

30

Figure 2.3 Routing fruit (packets). SOURCE: Tim Bell, University of Canterbury-
Christchurch, New Zealand

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

31

3. Looking Outward

3.1 THE RELATIONSHIP OF COMPUTATIONAL THINKING TO MATHEMATICS
AND ENGINEERING

For some, computational thinking is careful reasoning about the methods of doing

things that complements and combines mathematical and engineering thinking. The special
relationship of computational thinking to mathematics is historical, but looking toward the
future, computational thinking will be critical in the social and life sciences as well.
Computational thinking currently plays an important role in psychology, linguistics, graphics,
and economics and is playing an increasing role in complex engineering efforts such as
nanoscience and health. Computational thinking will apply much more broadly than most of
the other scientific modes of thought. The conceptual space to which computational thinking
applies is much broader than most people imagine, and many of the advances are
independent of the usual constraints on natural science.

3.1.1. Mathematical Thinking

Computational thinking is closely related to, but not identical with, mathematical
thinking. Both are deeply involved with abstraction and reasoning with recognized
simplified models. Gerald Sussman argued that computational thinking and mathematics
both have an “underlying linguistic structure… [that is] language for precise descriptions
and about how to do things and language describing the structure of things....such
languages are essential to clear thinking. But mathematical thinking is more about abstract
structure than abstract methodology.” Jeannette Wing also added the qualifier that while
similar to mathematical thinking in many respects, computational thinking does have to
consider the physical constraints of the underlying computer (whether machine or human).

Paulo Blikstein highlighted that since both mathematics and computational thinking
are tools for representation, there may be an opportunity to use computational thinking to
represent complex processes and relationships in a more comprehensible manner than
mathematics. One example he provided came from his observations of how engineering
courses were taught. He immediately noticed that within a common engineering course,
mathematical equations appear “approximately one every 2 minutes.” Blikstein added that
often these equations are around 10 variables long, and insufficient time is allocated to
actually explain the equations. He thinks that “this speaks to the failure of one particular
way to think about knowledge and one way to represent knowledge, which is representing
knowledge as differential equations and mathematical forms in general....Computational
representations might offer a lot of advantages over mathematical representations that we
might be able to explore.”

Gerald Sussman gave an example of teaching students how to analyze electrical
circuits. He noted that the typical pedagogical approach for this problem is to teach the
node method—which in practice many students find difficult to implement in any practical
way in solving problems in circuit theory. However , presenting students with a well-written

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

32

computer program designed to solve such problems as an expert would enable them to
internalize the program themselves and execute it much as that expert would.

3.1.2. Engineering

Several workshop participants recognized an overlap between engineering and
computational thinking. Even if it is not formally accepted in the engineering community,
engineering schools are “doing a lot of computational thinking,” said Blikstein. Wing argued
that both computational thinkers and engineers think about design, constraints, safety,
performance, and efficiency. Design issues considered include “simplicity, elegance,
usability, modifiability, maintainability, and cost. Wing said that “Computational thinking is
guided by particular concerns/constraints such as speed, space, and power [and
computational thinking is] more like physics and engineering in this respect. . . . [It is] these
kinds of concerns that determine how good an abstraction is. When we are defining
abstractions, of course, it is very similar to engineering thinking.”

At the same time, computational thinking is unlike engineering. As Wing pointed out
“In software we can basically do anything; we can actually build virtual worlds that are
unconstrained by physical reality.” Sussman argued that as contrasted to engineering
involving physical objects, “Computational thinking is engineering where we are not given a
hard time by the fact that the physical world produces tolerances, that there is error in the
construction of parts. As a consequence, instead of being limited by tolerances and that sort
of thing, as in, things like mechanical or electrical engineering, we are only limited by the
things we can think about, by the complexity that we can control in our minds.” In other
words, computational thinking invents the abstractions that it manipulates.

Peter Lee noted that several of the 14 engineering grand challenges for the 21st
century identified by the National Academy of Engineering had a strong information
technology/computer science/computational thinking flavor to them. These included
reverse engineering of the human brain; advancing personalized learning; securing
cyberspace; enhancing virtual reality; advancing health informatics; and engineering the
tools of scientific discovery.15

One important aspect of the computational thinking—engineering connection is
managing complexity. Engineered systems are becoming more and more complex. But Bill
Wulf noted that software engineering was arguably the first field to face challenges related
to complexity, and the need to manage complexity is important in computational thinking.
As noted in the Being Fluent with Information Technology report,16 managing complexity
entails tradeoffs. For example, one solution to a problem may involve complex design but
entail straightforward implementation, whereas another may involve a simple design but a
costly implementation. A solution will often result in components of a system interacting in
complex, unexpected ways, and the resources available to implement a solution may be

15 See National Academy of Engineering, “Grand Challenges for Engineering,”

National Academies, http://www.engineeringchallenges.org/ (accessed December 28,
2009).

16 NRC, 1999, Being Fluent with Information Technology, Washington, DC: The
National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482.
Accessed December 28, 2009.

http://www.engineeringchallenges.org/
http://www.nap.edu/catalog.php?record_id=6482

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

33

inadequate. Managing such dimensions of a problem’s solution is an exercise in managing
complexity.

So I like to think about computational thinking as complementing and combining
mathematical and engineering thinking. For instance, we clearly draw on mathematics
as our foundations. We also draw on engineering, since our systems actually operate in
the real world.
 –Jeanette Wing

3.2 DISCIPLINARY APPLICATIONS OF COMPUTATIONAL THINKING

Workshop participants shared their experiences in applying computational thinking in

different fields to illustrate how computational thinking might be relevant. Brian Blake
described the exchange as “trying to understand how computational thinking, as it is
embedded in computer science or computational fields, is used in non computational fields
to see how what we know in the computational field can be used in other fields.” The hope
was expressed that By describing some of these different applications, it would be possible
to identify concepts of computational thinking through its application in one discipline that
could be utilized to benefit another discipline and indeed to better define and describe
computational thinking.

• Medicine and health care. Peter Lee described how sequencing techniques

commonly employed in computational thinking can help to improve the chance of
success in matching organ donors. On a small scale, the task of cross-matching
multiple donors and patients is a relatively simple computational thinking exercise. At
the large scale at which the medical profession would need to perform these
matches to improve donation matching across the nation, this type of matching
poses a significant intellectual challenge for computational thinking practitioners.
Ian Foster noted that the medical profession is currently trying to cope with
enormous amounts of crucial but confidential data. This information must be easily
accessed and transferred among medical professionals to improve care but protected
from access and misuse by those outside the medical profession. Foster argued that
with the advent of health care informatics, “health care is arguably no longer a
medical problem, but a computing problem.”

• Archeology. Edward Fox works with archeologists attempting to look at trends
across different excavation sites. He said that the archeologists he collaborates with
have come to realize that “if you are going to study archaeological trends across
different areas, and the commerce that takes place between sites, then you have to
merge the data and you have to use common terminology.” For example,
archaeology often depends on archived data, where differences in recording
protocols, terms, measurement units, and languages make accessibility a

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

34

challenge.17 Moreover , archeological researchers need to organize large amounts of
qualitative data so that they can be retrieved computationally. Computational
thinking approaches to information retrieval, data fusion, and information integration
are especially useful in this area, since there is a need “to classify and search for
numerical, textual, and visual data simultaneously” and a need for “an e-science that
marries the interconnectedness of digital research tools with the introspection
enabled by traditional recordkeeping.”18

• Traffic engineering. Modern-day traffic lights are usually run by computer systems
that alternate traffic signals based on algorithms and embedded sensors and
networks. The most effective traffic algorithms are built data collected on traffic
patterns and other relevant variables in order to optimize flow. The processes by
which these algorithms are developed and tested involve computational thinking.
The methods skilled drivers may use to navigate them also reflect computational
thinking. Hoffmann noted the example of the veteran bus driver: “The bus driver
should know that if he steps on it [the gas pedal] too fast, he gets stuck at the next
traffic light anyway.”

• Cancer research. Peter Lee noted that agent-based modeling simulations have
helped researchers understand that a “tumor is not really a simple group of cells that
have their own agenda. They tend to live in an environment where the cells nearby
sort of form a nurturing matrix for them and respond to various requests from the
tumor for additional blood vessels, for example, or nutrients or whatever . This is
something that invalidates a lot of the existing medical science and puts it more into
a systems-thinking context, something that I think we [computational thinking
scholars] can contribute to.”

• Public policy. An increasingly technology-based society creates the need for techno-
savvy policy makers. For example, important issues related to information
technology arise regarding privacy, copyright, and spectrum allocation are prominent
on the public policy, issues for which an understanding of computational thinking is
very helpful. Bob Sproull illustrated the point by suggesting that a legislator might
need an understanding of computational thinking in order to be a smart customer of
a complicated IT system for the Social Security Administration or the Internal
Revenue Service.

• Music. Peter Lee described a summer program where young students attempt to
write computer programs that allow computers to compose original music. The
program challenged students to write a “computer program that could compose or a
machine that could take as input some description of Bach and then produce
beautiful music.” The process of building such systems makes use of computational
thinking in three ways. First, it requires that a programmer analyze and decompose
musical qualities into abstract computational thinking concepts. Second, the program
must construct algorithms and programming language that access and demonstrate

17 Dean R. Snow, Mark Gahegan, C. Lee Giles, Kenneth G. Hirth, George R. Milner ,

Prasenjit Mitra, and James Z. Wang, 2009, “Cybertools and Archeology,” Science 311
(5763):958-959.

18 Dean R. Snow, Mark Gahegan, C. Lee Giles, Kenneth G. Hirth, George R. Milner ,
Prasenjit Mitra, and James Z. Wang, 2009, “Cybertools and Archeology,” Science 311
(5763):958-959.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

35

the aforementioned musical qualities artificially. Finally, by observing this process of
decomposition and composition, one can learn more about human intelligence and
problem-solving processes.

• Law. Kevin Ashley discussed four ways computational thinking applications advance
the legal practice: logic debugging, testing, modeling, and information retrieval.

— Debugging through the reduction or elimination of “syntactic ambiguity” or

“logical ambiguity” is almost always present in any kind of legal drafting.
Whether in statutes, contracts, or insurance policies, unintentional ambiguities in
legal language are common and must be debugged. Ashley commented that this
process involves “getting the logic right, in a manner that’s kind of similar to
what computer programmers have to do in getting the logic right in a line of
code.”

— The development of good test cases reflects an important similarity between
computational and legal thinking—both test propositions (or statements) against
test cases. “Test cases are important in debugging in programming as well [as
in law]—real and hypothetical counterexamples, exceptions, things like that.”
Ashley pointed out that they can help a legal professional anticipate how
successful an argument is likely to be by simulating the application across
various test cases.

— Modeling complex legal processes and flows can help legal professionals to
understand “the flow of control through a statute, for the process of statutory
interpretation, for predicting outcomes, for structured arguments.”

— Information retrieval techniques are needed for legal information systems that
can represent the justifications and context in a reasonable way. Ashley pointed
to the role of precedent, or relevant preceding judgments in similar cases, in
legal arguments. Computational thinking can help lawyers to develop good
targeted searches based on complex criteria.

Ashley also expressed a caution that computational thinking might lead to over–
mechanization of complex processes. “Legal problem solving is highly context-
dependent in ways that may not be anticipated. As a law professor , I have to be
very cautious about recommending computational thinking to law students, because
it might lead them to focus more on a mechanical application of a predefined
method rather than on the context and the opportunities in the actual problem to be
solved. I have an obligation not to mislead. We don’t want mechanical
jurisprudence here. I think this caution probably applies in a lot of other areas as
well. ”

• Al Aho referred to Christos Papadimitriou’s talk “The Algorithmic Lens: How the
Computational Perspective Is Transforming the Sciences”19 as an exemplar of a
compelling story about the power of computational thinking. Briefly, Papadimitriou
presented a number of vignettes from mathematics, physics, biology, economics and
social science to show the unifying power of computation across these disciplines:

19 Christos H. Papadimitriou, 2009, The Algorithmic Lens: How the Computational

Perspective is Transforming the Sciences. Available at http://www.scivee.tv/node/10204.
Accessed December 28, 2009.

http://www.scivee.tv/node/10204

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

36

— In mathematics, the classic P versus NP from theoretical computer science was

named as one of the seven Clay Institute Millennium Problems20, which pose the
deepest, most fundamental, and consequential open problems in the field.

— In physics, quantum computation provides a method for exploring and testing
the limits of quantum mechanics. Further , how phase transitions can be
explained in statistical mechanics turns out to have deep similarities to the way
that certain randomized algorithms converge exponentially faster when their
parameters are in the right range (analogous to the temperature/pressure of a
physical system being at the critical point of a transition).

— In biology, understanding the mechanism of evolution can be productively
approached as an algorithmic problem. Using optimization theory and search to
compare simulated annealing and genetic algorithms as ways to sketch
landscapes of fitness functions, it can be shown that genetic algorithms tend to
find plateaus in the landscape, while simulated annealing finds peaks. Plateaus
in the landscape have the characteristic of being relatively broad and thus
relatively stable for many genetic combinations. Since simulated annealing is
analogous to asexual reproduction and genetic algorithms to sexual
reproduction, this approach suggests that rather than maximization of fitness,
sexual reproduction favors adequacy, or more specifically the ability of a genetic
variant to function adequately in the presence of a wide variety of genetic
partners.

— In economics and social science, the Internet—an IT artifact constructed but
never designed—must be studied using the methods of natural science (e.g.,
observation and experimentation) and in the context of the complex social
system it enables and serves. It is thus an ideal test bed for sociological analysis
and experimentation.

Complementing these perspectives, a number of participants including Bob

Constable noted the importance of acknowledging a two-way street for connecting
computational thinking to various disciplines. That is, it is not only that other disciplines can
benefit from the use of computational thinking in their respective domains—it is also the
case that the computer science and information science disciplines from which much of
computational thinking is derived benefit from understanding the basis of knowledge
creation in those other disciplines. Indeed, those other disciplines provide a context for
computational thinking that often leads to new discoveries in computer science and
information science themselves.

3.3 COMPUTATIONAL THINKING ACROSS DIFFERENT DISCIPLINES

The subsections below are organized around different elements of computational

thinking that have widespread application in multiple disciplines.

20 For more information see Clay Mathematice Institute, “P vs NP Problem,”

http://www.claymath.org/millennium/P_vs_NP/ (accessed December 28, 2009).

http://www.claymath.org/millennium/P_vs_NP/

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

37

3.3.1. Problem Solving/Debugging

Several speakers emphasized debugging of systems as an important application of

computational thinking. In the real world, people often encounter systems with which they
are unfamiliar and whose internal workings they do not understand. Robert Sproull pointed
out that when humans encounter such systems, they often attempt to establish “a known
state” of the system or a state of functionality that they find familiar or intuitive. This
behavior is an aspect of modeling the unfamiliar system in their minds, despite the fact they
may not necessarily know what sorts of algorithms are inside.

To develop these models and identify known states, an individual (or group) builds
on previous experience and encounters with similar systems to generate hypotheses about
how it works, about what its parts are, and so on. Debugging can then be done in a variety
of ways. One can, for instance, adjust parameter settings to attempt to debug a system.

You know something about debugging that you have learned from dealing with even more
complex things. It carries over as a set of techniques, not just because it was your
computer program that you were debugging rather than a dishwasher.
 –Robert Sproull

3.3.2. Testing

In the sense used here, testing refers to empirical activities that provide information

about whether and how a software artifact or system performs in accordance with its
performance requirements. For all but the simplest artifacts, it is not feasible to test a
system for all possible inputs, and so good testing procedures call for test suites, which
generally involve typical cases, boundary cases, and potential failure conditions. For a
listing of different kinds of testing appropriate at different stages in an artifact’s lifetime, see
http://www.softwareqatest.com/qatfaq1.html#FAQ1_10.

Children encounter many opportunities to engage in testing. One participant used
the example of a robotics competition to explain how students engage in testing. Robots are
designed to perform specific tasks, and designers must test their performance. Even if there
is no computing inside the robot, Sproull noted, “even it’s just a joystick driving a servo, you
have to figure out how to test it. ”

3.3.3. Data Mining and Information Retrieval

Popular culture often describes the modern society in a constant state of information

overload. Computational thinking provides intellectual tools to help manage information.
For example, a computational thinker will understand a variety of ways for retrieving
information. Edward Fox commented that computational thinking can help people who are
accessing lots of information from a number of data sources to represent it in some
common way and to find ways to communicate their results.

http://www.softwareqatest.com/qatfaq1.html#FAQ1_10

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

38

3.3.4. Concurrency and Parallelism

Ursula Wolz described a number of ways to expose students to the computational
concepts of concurrency and parallelism. For example, a college junior majoring in music
took Wolz’s introductory course to fulfill a quantitative reasoning requirement. Wolz’s
course uses Scratch, an application for manipulating animated characters, and according to
Wolz, “the first thing he ran up against was the problem of synchronicity between music
and animation.” With a few simple examples (offered by a more advanced student), the
music major said, “I get it. ” Wolz offered a second example of a sixth grade student who
worked on animation of comparable sophistication using PowerPoint. In both cases, Wolz
suggested that their successes in understanding concurrency and parallelism were due not
so much to the Scratch graphical environment as to the metaphors that help convey
understanding of the underlying concept.

Mitchel Resnick described a simple programming exercise in which the user
choreographs a dance for an animated cat. The “code” is structured to represent
interlocking blocks. Each block contains a specific set of instructions. For example, if a user
wants the sound of drums followed by the cat moving forward, then she would take the
drum block, interlock the forward step block and indicate the number of steps forward. In
this particular activity, users can see for themselves how programming, sequencing,
algorithmic thinking, and parallel thinking play out. In Resnick’s words, “Parallelism comes
very naturally. If I say, while it’s doing that, I also want to keep changing the color . . .
[then] I just have another stack that says I want to forever change the color . So it takes
some of the computational ideas of sequencing, and parallelism, and tries to make it very
easy to put together and explore these ideas.”

3.3.5. Modeling

To illustrate computational thinking, Mitchel Resnick used a personal example based

on his standing Monday tennis match. Every week, he and his partner Ken record who wins
how many games in each set, the number of games, and the number of sets. At the end of
the year , they have a record of the number of games and the number of sets that each
player won. One year, they noticed that Ken had won 54 percent of the games but 71
percent of the sets, and they asked, “What’s the explanation behind that?”

Coming from very different disciplines—Ken in biology and Mitchel in computer
science/education—each player conceptualized and approached this question very
differently. Ken’s explanation the next week was based on handwritten calculations
involving expansions of a binomial expression. Mitch’s explanation was based on a
simulation of matches and replicating the data using children’s instructional software called
Scratch. The program was developed to determine “randomly for each game that Ken has
a 55 percent chance of winning [and] I have a 45 percent chance of winning.” As the
simulation was repeatedly run, the total wins-to-losses ratio closely reflected the real-life
outcome.

More generally, modeling is a means by which one represents a system or a process
in order to learn more about it and manage complexity. One participant mentioned the
power of computational thinking to improve the effective development of complex models
through knowledge of scale. Peter Lee argued that a computational thinker “understands
the consequences of scale” and can thus “think very big and very small and understand the

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

39

tipping points at each point.” As more data are gathered, the more sophisticated the model
one can build to describe a system. If there is sufficient fidelity in a model, one can perform
necessary testing within the model itself. Computers and computation can dramatically
increase the amount of data represented in these models and thus a model’s fidelity. An
example using computational thinking to model plane crash testing is shown in Figure 3.1.

Paulo Blikstein complemented this perspective when he described bifocal modeling,
wherein the physical and virtual were blended in models, sometimes by using the physical
world as inputs to a model, by calibrating a model, or by comparing the output of model
mechanisms to sensor data. He argued that such blending was becoming more common in
the practice of science and was also a powerful means of engaging students.

Yasmin Kafai noted an example of the importance of understanding models and their
limitations: “Government authorities often use models to make predictions, but people often
don't understand how these models were made, what the parameters are, or what kind of
assumptions are underlying them...here we have a really great example...[in talking] about
computational thinking for everyone and kind of as a goal for citizenship [in] that citizens
need to also understand how decisions are being made and what some of the pitfalls in the
models will be.” Wilensky added that computational thinking involves more than consuming
models, experimenting with models, or even constructing them, but also creating a culture
of model critique.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

40

Figure 3.1 Modeling of an airplane crash.

(Left) Image of a crash test measuring the force of impact on an actual F-4 Phantom
airplane; image courtesy of Sandia National Labs. (Right) Image of a computational model
of the force of impact on an aircraft; image courtesy of Christoph Hoffman, Purdue
University.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

41

4. Relationship to Past and Ongoing Efforts

4.1 PREVIOUS WORK

A number of past activities and reports have argued for introducing computational

thinking to populations broader than undergraduates and graduate students matriculating in
computer science or information technology. In addition, several reports have sought to
identify what computer scientists believe is the intellectual core of their discipline.

4.1.1. LOGO

In the 1960s, Seymour Papert introduced the notion of a computer-based

microworld that could serve as an environment in which children could learn “to manipulate,
to extend, to apply to projects, thereby gaining a greater and more articulate mastery of the
world, a sense of the power of applied knowledge and a self-confidently realistic image of
himself as an intellectual agent.” He argued that computation could have “a profound
impact by concretizing and elucidating many previously subtle concepts in psychology,
linguistics, biology, and the foundations of logic and mathematics” by giving a child the
ability “to articulate the working of his own mind and particularly the interaction between
himself and reality in the course of learning and thinking.”21

As an example, Papert offered mathematics. He argued that many children never
see the point of the formal use of language, which is what much of mathematics teaches.
They also rarely, if ever , have the experience of designing a formalism of their own adapted
to a particular personally meaningful task. But anyone who programs a computer does
these things routinely. Through the construction of specialized formal microworlds, the
LOGO environment is intended to provide appropriate terminology and concepts that
facilitate the formal use of language and the child-driven extension of that language in
useful ways. By programming the computer to do interesting things, Papert argued,
children can become highly sophisticated and articulate in the art of developing models and
developing formal systems.

A number of workshop participants, Uri Wilenksy among them, also pointed out that
although many of the intellectual ideas introduced by the LOGO movement are quite similar
to those underlying the advocacy of computational thinking, there are many significant
differences in the larger environment in which these activities were and are embedded.
Forty years ago, when LOGO was first introduced, computational infrastructure was
expensive, and access to networking and personal computing was non-existent for all
practical purposes. Today, computational devices are everywhere, and access to
networking and personal computing are quite commonplace. Moreover , the idea that
computational technology could have a deep impact on everyday life for most citizens—
outlandish then—is now easily accepted, and thus the ubiquitous presence of computational

21 Seymour Papert, 1975, “Teaching Children Thinking,” Journal of Structural

Language 4: 219-29.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

42

devices in our lives is an important motivator for systems of formal education to provide
individuals with appropriate intellectual tools for managing and using such devices
effectively.

4.1.2. Fluency with Information Technology (FIT)

The 1999 report Being fluent with Information Technology, also known as the
FITness report or the Fluency report, was an effort by the Computer Science and
Telecommunications Board of the National Research Council to articulate what everyone
should know about information technology.22

In formulating the relevant knowledge base, this effort identified three equally
important categories of knowledge: cognitive/intellectual capabilities, computational
concepts, and IT skills. Capabilities focus on logical reasoning and problem solving such as
debugging. Concepts represent the fundamental ideas that underlie technology such as
programming and algorithms. Finally, skills are the actual knowledge required when using
information technology, such as creating a Word document or sending an Email.

The attempt to define “everyone” was more problematic—although the members of
the responsible committee likely believed, as individuals, that all K-12 students should be
exposed to the elements of IT fluency, and indeed should become fluent with information
technology, none of the committee members had any particular standing to make such an
assertion, and in the end the committee limited the scope of its recommendations to all
graduates of four-year colleges and universities.

The executive summary of Being Fluent with Information Technology is reprinted as
Appendix C.

I think the goals of the fluency report were [answering the question] what should
everybody know to be a more effective user of technology? And I think that
computational thinking focuses more on [the] intellectual activities that apply to all of
the sciences and engineering that we talked about, and [also] all those other areas that
could benefit from computation. So it seems to me that they’re slightly different
objectives. I don't see them as in conflict. . . . they overlap a lot because they do speak
to a similar set of phenomena.
 —Lawrence Snyder

4.1.3. Computing the Future

In 1992, the National Research Council issued the report Computing the Future,23

which (among other things) was the first Academy effort to articulate the nature of
computer science and engineering as an intellectual discipline. That report noted the
following (pp. 19-24):

22 NRC, 1999, Being Fluent with Information Technology, Washington, DC: National

Academy Press. Available at http://www.nap.edu/catalog.php?record_id=6482. Accessed
December 28, 2009.

23 NRC, 1992, Computing the Future: A Broader Agenda for Computer Science and
Engineering, Washington, DC: National Academies Press. Available at
http://www.nap.edu/catalog.php?record_id=1982. Accessed December 28, 2009.

http://www.nap.edu/catalog.php?record_id=6482
http://www.nap.edu/catalog.php?record_id=1982

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

43

Intellectually, the "science" in "computer science and engineering" connotes
understanding of computing activities, through mathematical and engineering models
and based on theory and abstraction. The term "engineering" in "computer science
and engineering" refers to the practical application, based on abstraction and design,
of the scientific principles and methodologies to the development and maintenance
of computer systems—be they composed of hardware, software, or both. [The notion
of CS&E as a discipline based on theory, abstraction, and design is described in Peter
Denning, Douglas E. Comer , David Gries, Michael C. Mulder , Allen Tucker , Joe Turner ,
and Paul R. Young, 1989, "Computing as a Discipline," Communications of the ACM,
32(1):9-23, January.] Thus both science and engineering characterize the approach
of CS&E professionals to their object of study.

What is the object of study? For the physicist, the object of study may be an atom
or a star . For the biologist, it may be a cell or a plant. But computer scientists and
engineers focus on information, on the ways of representing and processing
information, and on the machines and systems that perform these tasks.

The key intellectual themes in CS&E are algorithmic thinking, the representation of
information, and computer programs. An algorithm is an unambiguous sequence of
steps for processing information, and computer scientists and engineers tend to
believe in an algorithmic approach to solving problems. In the words of Donald
Knuth, one of the leaders of CS&E:

CS&E is a field that attracts a different kind of thinker . I believe that one
who is a natural computer scientist thinks algorithmically. Such people are
especially good at dealing with situations where different rules apply in
different cases; they are individuals who can rapidly change levels of
abstraction, simultaneously seeing things "in the large" and "in the small."
[Personal communication to the NRC Committee to Assess the Scope and
Direction of Computer Science and Technology, Donald Knuth, March 10,
1992 letter .]

The second key theme is the selection of appropriate representations of information;
indeed, designing data structures is often the first step in designing an algorithm.
Much as with physics, where picking the right frame of reference and right
coordinate system is critical to a simple solution, picking one data structure or
another can make a problem easy or hard, its solution slow or fast.

The issues are twofold: (1) how should the abstraction be represented, and (2) how
should the representation be properly structured to allow efficient access for
common operations? A classic example is the problem of representing parts,
suppliers, and customers. Each of these entities is represented by its attributes
(e.g., a customer has a name, an address, a billing number , and so on). Each
supplier has a price list, and each customer has a set of outstanding orders to each
supplier . Thus there are five record types: parts, suppliers, customers, price, and
orders. The problem is to organize the data so that it is easy to answer questions
like: Which supplier has the lowest price on part P?, or , Who is the largest customer
of supplier S? By clustering related data together , and by constructing auxiliary
indices on the data, it becomes possible to answer such questions quickly without
having to search the entire database.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

44

The two examples below also illustrate the importance of proper representation of
information:

• A "white pages" telephone directory is arranged by name: knowing the name,

it is possible to look up a telephone number . But a "criss-cross" directory that
is arranged by number is necessary when one needs to identify the caller
associated with a given number . Each directory contains the same
information, but the different structuring of the information makes each
directory useful in its own way.

• A circle can be represented by an equation or by a set of points. A circle to be

drawn on a display screen may be more conveniently represented as a set of
points, whereas an equation is a better representation if a problem calls for
determining if a given point lies inside or outside the circle.

A computer program expresses algorithms and structures information using a
programming language. Such languages provide a way to represent an algorithm
precisely enough that a "high-level" description (i.e., one that is easily understood by
humans) can be mechanically translated ("compiled") into a "low-level" version that
the computer can carry out ("execute"); the execution of a program by a computer is
what allows the algorithm to come alive, instructing the computer to perform the
tasks the person has requested. Computer programs are thus the essential link
between intellectual constructs such as algorithms and information representations
and the computers that enable the information revolution.

Computer programs enable the computer scientist and engineer to feel the
excitement of seeing something spring to life from the "mind's eye" and of creating
information artifacts that have considerable practical utility for people in all walks of
life. Fred Brooks has captured the excitement of programming:

The programmer , like the poet, works only slightly removed from pure
thought-stuff. He builds castles in the air , creating by the exertion of the
imagination. . . . Yet the program construct, unlike the poet's words, is real
in the sense that it moves and works, producing visible outputs separate
from the construct itself. . . . The magic of myth and legend has come true
in our time. One types the correct incantation on a keyboard, and a display
screen comes to life, showing things that never were, nor could be.
[Frederick Brooks, 1975, The Mythical Man-Month, Reading, MA: Addison-
Wesley.]

Programmers are in equal portions playwright and puppeteer , working as a novelist
would if he could make his characters come to life simply by touching the keys of his
typewriter . As Ivan Sutherland, the father of computer graphics, has said,

Through computer displays I have landed an airplane on the deck of a
moving carrier , observed a nuclear particle hit a potential well, flown in a
rocket at nearly the speed of light, and watched a computer reveal its
innermost workings. [Ivan Sutherland, 1970, "Computer Displays," Scientific
American, 222(6):56-81.]

Programming is an enormously challenging intellectual activity. Apart from deciding
on appropriate algorithms and representations of information, perhaps the most

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

45

fundamental issue in developing computer programs arises from the fact that the
computer (unlike other similar devices such as non-programmable calculators) has
the ability to take different courses of action based on the outcome of various
decisions. Here are three examples of decisions that programmers convey to a
computer:

• Find a particular name in a list and dial the telephone number associated with it.
• If this point lies within this circle then color it black; otherwise color it white.
• While the input data are greater than zero, display them on the screen.

When a program does not involve such decisions, the exact sequence of steps (i.e.,
the "execution path") is known in advance. But in a program that involves many
such decisions, the sequence of steps cannot be known in advance. Thus the
programmer must anticipate all possible execution paths. The problem is that the
number of possible paths grows very rapidly with the number of decisions: a
program with only 10 "yes" or "no" decisions can have over 1000 possible paths, and
one with 20 such decisions can have over 1 million.

. . . .

The themes of algorithms, programs, and information representation also provide
material for intellectual study in and of themselves, often with important practical
results. The study of algorithms within CS&E is as challenging as any area of
mathematics; it has practical importance as well, since improperly chosen algorithms
may solve problems in a highly inefficient manner , and problems can have intrinsic
limits on how many steps are needed to solve them. The study of programs is a
broad area, ranging from the highly formal study of mathematically proving
programs correct to very practical considerations regarding tools with which to
specify, write, debug, maintain, and modify very large software systems (otherwise
called software engineering). Information representation is the central theme
underlying the study of data structures (how information can best be represented for
computer processing) and much of human-computer interaction (how information
can best be represented to maximize its utility for human beings).

4.1.4. Reflections on the Field

The 2004 NRC report, Computer Science: Reflections on the Field, Reflections from
the Field included an essay by Gerald Sussman entitled “The Legacy of Computer Science.”24
Quoting from that essay (pp. 181-183):

“Computer Science is not a science, and its ultimate significance has little to do with
computers. The computer revolution is a revolution in the way we think and in the
way we express what we think. The essence of this change is the emergence of what
might best be called procedural epistemology—the study of the structure of

24 NRC, 2004, “The Legacy of Computer Science,” pp. 190-183, in Computer Science:

Reflections on the Field, Reflections from the Field, Washington, D.C.: The National
Academies Press. Available at http://www.nap.edu/catalog.php?record_id=11106. Accessed
December 28, 2009.

http://www.nap.edu/catalog.php?record_id=11106

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

46

knowledge from an imperative point of view, as opposed to the more declarative
point of view taken by classical mathematical subjects. Traditional mathematics
provides a framework for dealing precisely with notions of ‘what is. ’ Computation
provides a framework for dealing precisely with notions of ‘how to.’” [Harold Abelson,
Gerald Jay Sussman, with Julie Sussman, 1985, Structure and Interpretation of
Computer Programs, (1st edition), Cambridge, MA, MIT Press.]

Computation provides us with new tools to express ourselves. This has already had
an impact on the way we teach other engineering subjects. For example, one often
hears a student or teacher complain that the student knows the “theory” of the
material but cannot effectively solve problems. We should not be surprised: the
student has no formal way to learn technique. We expect the student to learn to
solve problems by an inefficient process: the student watches the teacher solve a
few problems, hoping to abstract the general procedures from the teacher's behavior
with particular examples. The student is never given any instructions on how to
abstract from examples, nor is the student given any language for expressing what
has been learned. It is hard to learn what one cannot express.

In particular , in an introductory subject on electrical circuits we show students the
mathematical descriptions of the behaviors of idealized circuit elements such as
resistors, capacitors, inductors, diodes, and transistors. We also show them the
formulation of Kirchoff's laws, which describe the behaviors of interconnections.
From these facts it is possible, in principle, to deduce the behavior of an
interconnected combination of components. However , it is not easy to teach the
techniques of circuit analysis. The problem is that for most interesting circuits there
are many equations and the equations are quite complicated. So it takes
organizational skills and judgment to effectively formulate the useful equations and
to deduce the interesting behaviors from those equations.

Traditionally, we try to communicate these skills by carefully solving selected
problems on a blackboard, explaining our reasoning and organization. We hope that
the students can learn by emulation, from our examples. However , the process of
induction of a general plan from specific examples does not work very well, so it
takes many examples and much hard work on the part of the faculty and students to
transfer the skills.

However , if I can assume that my students are literate in a computer programming
language, then I can use programs to communicate ideas about how to solve
problems: I can write programs that describe the general technique of solving a class
of problems and give that program to the students to read. Such a program is
precise and unambiguous—it can be executed by a dumb computer! In a nicely
designed computer language a well-written program can be read by students, who
will then have a precise description of the general method to guide their
understanding. With a readable program and a few well-chosen examples it is much
easier to learn the skills. Such intellectual skills are very hard to transfer without the
medium of computer programming. Indeed, “a computer language is not just a way
of getting a computer to perform operations but rather it is a novel formal medium
for expressing ideas about methodology. Thus programs must be written for people
to read, and only incidentally for machines to execute.” [Harold Abelson, Gerald Jay
Sussman, with Julie Sussman, 1985, Structure and Interpretation of Computer
Programs, (1st edition), Cambridge, MA, MIT Press.]

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

47

I have used computational descriptions to communicate methodological ideas in
teaching subjects in electrical circuits and in signals and systems. Jack Wisdom and I
have written a book and are teaching a class that uses computational techniques to
communicate a deeper understanding of classical mechanics. Our class is targeted
for advanced undergraduates and graduate students in physics and engineering. In
our class computational algorithms are used to express the methods used in the
analysis of dynamical phenomena. Expressing the methods in a computer language
forces them to be unambiguous and computationally effective. Students are
expected to read our programs and to extend them and to write new ones. The task
of formulating a method as a computer-executable program and debugging that
program is a powerful exercise in the learning process. Also, once formalized
procedurally, a mathematical idea becomes a tool that can be used directly to
compute results.

4.1.5. Engineering in K-12 Education

The National Academy of Engineering (NAE) and its Committee on K-12 Engineering

Education issued a report arguing that an engineering component has been largely missing
in recent attempts to improve science, technology, engineering, and mathematics (STEM)
education.25 The NAE committee found this fact particularly troubling in light of its view that
“. . . K-12 engineering education may improve student learning and achievement in science
and mathematics; increase awareness of engineering and the work of engineers; boost
youth interest in pursuing engineering as a career; and increase the technological literacy of
all students.” That committee also hypothesized that the “future of K-12 engineering
education” will depend on whether engineering becomes a more interconnected component
of STEM education or remains a separate subject.

The report noted that unlike mathematics and science education in the K-12 years,
engineering education does not have much in the way of teaching standards, testing and
assessment, or teacher professional development. More broadly, the committee held that
there is “no widely accepted vision of what K-12 engineering education should include or
accomplish. This lack of consensus reflects the ad hoc development of educational materials
in engineering and that no major effort has been made to define the content of K-12
engineering in a rigorous way. . . . These shortcomings may be the result, at least in part of
the absence of a clear description of which engineering knowledge, skills, and habits of
mind are most important, how they relate to and build on one another , and how and when
(i.e. at what age) they should be introduced to students.”

To improve engineering education, the report noted the importance of emphasizing
engineering design, incorporating important and developmentally appropriate mathematics,
science, and technology knowledge skills (among which were certain “computational
methods”), and promoting engineering habits of mind (i.e., the values, attitudes, and
thinking skills associated with engineering). Such considerations are relevant to the
discussion of this workshop report because of the strong connections between many such

25 National Academy of Engineering and National Research Council, 2009,

Engineering in K-12 Education: Understanding the Status and Improving the Prospects,
Washington, DC: The National Academies Press. Available at
http://www.nap.edu/catalog.php?record_id=12635. Accessed December 28, 2009.

http://www.nap.edu/catalog.php?record_id=12635

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

48

engineering habits of mind and computational thinking. The report also called for research
on various dimensions of engineering education (including its connection to other STEM
fields) and for the initiation of a national dialogue on preparing K-12 educators to address
the special challenges of engineering education at the K-12 level.

4.1.6. Technically Speaking

In 2002, the National Academy of Engineering and the NRC issued the report
Technically Speaking: Why All Americans Need to Know More About Technology26 and its
companion website.27 This report advanced a view of technological literacy that
encompasses three interdependent dimensions—knowledge, ways of thinking and acting,
and capabilities with the goal of providing people “with tools to participate intelligently and
thoughtfully in the world around them”:

• Knowledge for technological literacy consists of a recognition of the pervasiveness of

technology in everyday life, an understanding of basic engineering concepts, an
understanding of the limitations of the engineering process, a knowledge of ways
technology has shaped human history and vise versa, a recognition that technology
reflect the values and culture of society, a recognition of technology risk, both
anticipated and unanticipated, and an awareness that technology development
involves cost/benefit tradeoffs.

• Ways of thinking and acting for technological literacy include questioning oneself and
others regarding benefits and risks associated with technology, actively seeking
information about new technologies, and actively taking part in decisions about the
development and use of technology.

• Some of the basic capabilities the report points to as characteristic in a technically
literate person include certain hands-on technical skills like word processing or
navigating online, an ability to identify and fix simple technical malfunctions, and an
ability to think about benefits and risk in basic mathematical terms.

These three dimensions have approximate mappings to the tripartite framework of

FITness (foundational concepts, intellectual capabilities, and contemporary skills), as
discussed in Box 2.2.

4.2 SOME DRIVERS OF CHANGE

Workshop participants described a number of ongoing efforts to revise and reform

computing-related education. Implicit in these efforts is a presumption that they will all

26 National Academy of Engineering and National Research Council, 2002, Technically

Speaking: Why All Americans Need to Know More About Technology, Washington, DC:
National Academy Press. Available at http://www.nap.edu/catalog.php?record_id=10250.
Accessed December 28, 2009.

27 For the companion website, see National Academy of Engineering, “Technically
Speaking,” National Academies. Available at http://www.nae.edu/techlit (accessed
December 28, 2009).

http://www.nap.edu/catalog.php?record_id=10250
http://www.nae.edu/techlit

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

49

have to address computational thinking in some form, but for the most part, their efforts
had not converged on a common definition of the term.

4.2.1. The National Science Foundation CPATH Program

In 2008, the Computer and Information Science and Engineering (CISE) Directorate

of the National Science Foundation launched a program entitled “CISE Pathways to
Revitalized Undergraduate Computing Education” (CPATH).28 This program emphasizes the
development of student competencies in computing concepts, methods, technologies, and
tools (which collectively constitute what the program calls computational thinking) in
approaches that promise to revitalize undergraduate education.

Founded on the importance of preparing a globally competitive U.S. workforce that
is able to apply computational thinking to a broad range of societal challenges and
opportunities, the program seeks to contribute to the development of a globally competitive
U.S. workforce with computational thinking competencies essential to U.S. leadership in the
global innovation enterprise; to increase the number of students developing computational
thinking competencies by infusing computational thinking learning opportunities into
undergraduate education in the core computing fields—computer and information science
and engineering—and in other fields of study; and to demonstrate transformative
computational thinking-focused undergraduate education models that are replicable across a
variety of institutions.

Although aimed primarily at revitalizing undergraduate education, the program also
encourages the exploration of new models that extend from institutions of higher education
into the K-12 environment. Activities that engage K-12 teachers and students to facilitate
the seamless transition of secondary students into undergraduate programs focused on
computational thinking are particularly encouraged.

4.2.2. The Computing Research Association Education Committee

Andrew Bernat described for workshop participants some of the present-day efforts
(2009) of the Computing Research Association Education Committee.29 Stressing the
importance of revitalizing computing education and noting the centrality of computers and
computing to a number of fields—art, music, history, and archeology, as well as the
traditional sciences and engineering—Bernat said that these efforts focus on “the computing

28 For more information, see NSF Directorate for Computer and Information Science

and Engineering (CISE), “CISE Pathways to Revitalized Undergraduate Computing Education
(CPATH) FAQ Site,” NSF , http://www.nsf.gov/cise/funding/cpath_faq.jsp. (accessed
December 28, 2009) and CISE Pathways to Revitalized Undergraduate Computing Education
(CPATH) Program Summary,” NSF ,
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=500025&org=CNS&from=home
(accessesd December 28, 2009).

29 For more information visit The Computing Research Association (CRA),
http://www.cra.org/, (accessed December 28, 2009.

http://www.nsf.gov/cise/funding/cpath_faq.jsp
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=500025&org=CNS&from=home
http://www.cra.org/

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

50

education that a researcher in any discipline needs to know and think about and
understand. It is not intended to be the undergraduate curriculum that someone going on
to do computer science should be exposed to or should learn. It’s about researchers in any
discipline. What are the core things about computing that everyone needs to understand?”
Bernat further emphasized that in contrast to groups such as the ACM that are focusing on
education in computer science, the CRA intends to focus its efforts on computing skill,
knowledge, and impact outside the computer science discipline.

4.2.3. Advanced Placement Computer Science—NSF Broadening Participation
Program and the College Board

 Jan Cuny described for workshop participants the NSF/College Board collaboration to
redesign and revitalize the high school Advanced Placement (AP) Computer Science
curriculum.30,31 According to Cuny, the current CS AP course is inaccessible to students and
fails to introduce the fundamental concepts of computational thinking. Cuny expressed the
hope that a new “gold standard” AP course that addresses these concepts will revive the
flagging interest of high school students in computer science, information technology, and
mathematics and will provide a foundation for future study in computing.

She pointed out that developing the curriculum for this new course is not the most
challenging aspect. The hardest part is to gain entry into “resource-strapped schools.”
Nevertheless, Cuny hopes that this new gold standard CS AP course can be introduced into
10,000 schools (with a complement of 10,000 teachers trained to teach the course) by
2014. She was not unmindful of the challenges, pointing out that most of these teachers
are not computer scientists themselves. “Most of them are from math or from physics or
from chemistry and they know how to program. . . but they don’t know about computability.
They don’t know about algorithm design. There’s a whole lot of stuff that they don’t know.
So it’s not just in-service preparation meaning bring them in for a week. It’s really
significant training that we have to provide. And we have to figure out how to make that
palatable for them.”

Finally, Cuny raised the related point that it is important to distinguish between ideas
and concepts that can be tested on a standardized exam and what it means to assess
whether students can think computationally. In the absence of a consensus on the scope
and nature of computational thinking, she noted that it would be very difficult to develop an
appropriate assessment tool for the latter .

4.2.4. Carnegie Mellon University’s Center on Computational Thinking

30 The College Board, “National Science Foundation Awards $1.8 Million to College

Board to Redesign AP Science Courses,” The College Board,
http://www.collegeboard.com/press/releases/51572.html (accessed December 28, 2009).

31 NSF Directorate fro Computer & Information Science& and Engineering (CISE),
“Broadening Participation in Computing (BPC),” NSF ,
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13510&org=CNS&from=home
(accessed December 28, 2009)

http://www.collegeboard.com/press/releases/51572.html
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13510&org=CNS&from=home

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

51

Carnegie Mellon University’s Center for Computational Thinking is the home to a

number of projects that focus on using computational thinking to tackle broad social and
interdisciplinary issues. According to Peter Lee, these projects—known as PROBlem-
oriented Explorations, or PROBEs in the local vernacular—cover a wide range of ongoing
research projects, all of which are designed to demonstrate the critical importance of
computational thinking. These projects typically engage the sciences, the arts, and
literature.32

• During the workshop, Lee pointed to the Optimal Kidney Exchange PROBE, which

uses novel algorithm design and database networking to identify optimal kidney
matches between donors based on a complex set of criteria. Traditionally, kidney
matching is done manually by medical experts based on blood type, organ size,
patient condition, and so on. The manual methods used by most physicians also
tend to look at a small number of donors and patients—paired donations (involving
two donors coordinating their donations) are the most common. By using larger
numbers of coordinated donors (8 or 10 or 12 donors at a time), the number of
organs made available that can match the needs of individual recipients can be
vastly increased. However , the complexity of coordinating larger numbers of donors
is quite daunting, unless efficient computational algorithms can be used to perform
the search. The result is that medical experts can match kidneys among a much
larger number of patients and donors in a number of kidney exchange programs
more rapidly. More effective kidney exchanges can improve the quality of life for
those on dialysis current awaiting kidneys, save millions in medical costs for dialysis
treatments, and save thousands of lives.

• Discussed on the center’s website, the Performer PROBE is an interactive music
system for live performance that is capable of composing and accompanying live
music in different genres, such as classical, rock, and Latin. 33 Unlike systems that
merely accompany human performed music and require a strict adherence to beat
and score, Performer will be able to interact with other human musicians, change
tempo, and even change styles in a manner that is similar to how a human would
behave in such a situation. PERFORMER employs modeling, sequencing,
synchronicity, algorithms, human-computer interaction theory, sensors, and data
management theory to dissect nuances of music composition and music
performance.

• The center’s website also discusses the PROBE on Understanding and Harnessing
Ensemble Behavior ,34 which uses the “programming” metaphor to understand how
the behavior of components aggregate to produce behavior in complex systems,
whether natural or man-made. Although the complex system is “just” the
aggregation of its constituent components, the capabilities of the system far exceed

32 See The Center for Computational Thinking, “PROBEs,” Carnegie Mellon University,

http://www.cs.cmu.edu/~CompThink/probes.html (accessed December 28, 2009).
33 See The Center for Computational Thinking, “PROBEs,” Carnegie Mellon University,

http://www.cs.cmu.edu/~CompThink/probes.html (accessed December 28, 2009).
34 See The Center for Computational Thinking, “PROBEs,” Carnegie Mellon University,

http://www.cs.cmu.edu/~CompThink/probes.html (accessed December 28, 2009).

http://www.cs.cmu.edu/~CompThink/probes.html
http://www.cs.cmu.edu/~CompThink/probes.html
http://www.cs.cmu.edu/~CompThink/probes.html

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

52

the aggregate of the capabilities of those components. Using a specially developed
programming language called Meld, the project demonstrates abstraction,
programming, logic, ensemble engineering, self-organization, robotics, and
programming in the context of understanding emergent behavior . Meld is designed
to streamline the process of programming for ensemble systems, and it works by
propagating the commands that input through every node in the system, thus saving
the programmer the time needed to propagate the command herself.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

53

5. Open Questions

As noted in the preface, NRC workshops are not designed to produce consensus.
However , although there was little general agreement among workshop participants about
the essential nature of computational thinking, a number of questions did emerge that are
worthy of attention in the future.

5.1 WHAT IS THE STRUCTURE OF COMPUTATIONAL THINKING?

Throughout the course of the workshop, participants expressed a host of different
views about the scope and nature of computational thinking. But even though workshop
participants generally did not explicitly disagree with views of computational thinking that
were not identical to their own, almost every participant held his or her own perspective on
computational thinking that placed greater emphasis on particular aspects or characteristics
of importance to that individual. (These different perspectives are described in Section 2.)

Given this divergence in individual emphases, one possibility concerning structure is
that computational thinking is simply the union of these different views—a laundry list of
different characteristics. On the other hand, such a perspective would be both incoherent
and deeply unsatisfying to most workshop participants, and there was general agreement
that a more coherent perspective is needed. Further thought about many questions
emerging from the workshop is thus warranted; these questions include:

• What is the core of computational thinking?
• What are the elements of computational thinking?
• What is the sequence or trajectory of development of computational thinking?
• Does computational thinking vary by discipline?

Some of the logical subquestions that follow include:

o What are the logical relationships between the various elements of computational

thinking?
o What elements of computational thinking were not discussed in the workshop

that should be included in subsequent discussions?
o How and to what extent, if any, is the ability to program an essential aspect of

computational thinking? What should be the definition of “programming” in this
context?

Answers to these questions would provide some structure to computational thinking

as a systematized mode of thought. In a 2007 article,1 Thomas Cortina of Carnegie Mellon

1 Thomas Cortina, 2007, “An Introduction to Computer Science for Non-majors

Using Principles of Computation,” Technical Symposium on Computer Science Education,
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education,

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

54

University suggests that David Harel's Algorithmics: The Spirit of Computing2 is a good point
of departure for developing a coherent structure for how different elements of
computational thinking relate to one another .

5.2 HOW CAN A COMPUTATIONAL THINKER BE RECOGNIZED?

Workshop participants grappled with the question of how to determine an

individual’s competence with computational thinking. Some workshop participants asked
how one would determine that a student has mastered basic elements of computational
thinking, just as one might master basic reading, writing, or arithmetic skills. Others asked
how one might certify teachers as having both competence in computational thinking and
the ability to teach computational thinking. In Ursula Wolz’s words, “What does it mean to
create teachers who have that kind of literacy, both to read the languages and so that they
can think about it and express it to their students, and also so that they become facile
writers?. . . . to make sure that what we are doing is teaching them how to read and write,
not how to do phonics.”

Several workshop participants noted the importance of context in computational
thinking, expressing the view that just as learning arithmetic goes beyond more than
knowing the algorithms of addition and multiplication to being able to apply these
algorithms in real-world situations, being a competent computational thinker must include
the ability to apply computational thinking to actual problems. That is, even if it is feasible
to articulate clearly the content of computational thinking, such content becomes
meaningful only in some specific context. One must use computational thinking in a context
and must understand the nature of the context to apply computational thinking skills
effectively.

The question of generalizability is also important. Experts in one field are not
necessarily successful in exploring other fields. Experts may be more facile at learning in
related domains than students who are not yet expert in any particular domain, but a lack
of understanding of the related domain will limit the success even of experts. So, arguably,
another part of computational thinking is the ability to apply its content to multiple domains
and to recognize the connections between those applications.

Along these lines, Richard Lipton expressed this sentiment as follows: “. . . The
greatest challenge to a computational thinker , to any thinker , is stating the problem in a
way that will allow a solution.” What are you really trying to accomplish? The ability to
recognize when the same ‘question is being asked’ or ‘the same problem presented’ can
facilitate use of computational thinking in new disciplines.

Covington, KY . ACM Special Interest Group on Computer Science Education, March 7-10,
2007, pp. 218-222.

2 David Harel, 1987, Algorithmics: The Spirit of Computing, 1st Ed., Reading, Mass.:

Addison-Wesley.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

55

5.3 WHAT IS THE CONNECTION BETWEEN TECHNOLOGY AND
COMPUTATIONAL THINKING?

Workshop participants were divided on the centrality of technology to computational

thinking. Some expressed the view that at its core, computational thinking was
independent of technology—that being a competent computational thinker did not
necessarily imply anything about one’s ability to use modern information technology. Some
participants argued that computational thinking is an emergent property of technological
advance. As technologies develop they enable new forms of computational thinking. Others
believed that the connections between information technology and computational thinking
were so deep that it effectively makes no sense to regard the two as separate. In this view,
the computer—and notions of computer programming—can make the concepts, principles,
methods, models, and tools of computational thinking tangible, in much the same spirit that
LOGO was first inspired.

5.4 WHAT IS THE BEST PEDAGOGY FOR PROMOTING COMPUTATIONAL
THINKING?

A great deal of education research in recent years suggests (1) that students can

learn thinking strategies such as computational thinking as they study a discipline, (2) that
teachers and curricula can model these strategies for students, and (3) that appropriate
guidance can enable students to learn to use these strategies independently. In many
cases, a key element of “appropriate guidance” consists of the capabilities afforded by a
suitable computational environment and toolkits, such as programming languages for
computing and modeling languages for noncomputing domains that are particularly helpful
in promoting computational thinking.

Recent exploratory research on technology-enhanced learning suggests that
computers can facilitate this process by guiding students as they explore complex problems,
use scientific visualization, and collaborate with peers.3 Such learning environments may

3 See, for example, Uri Wilensky and Kenneth Reisman, 2006, “Thinking Like a Wolf,

a Sheep, or a Firefly: Learning Biology Through Constructing and Testing Computational
Theories—an Embodied Modeling Approach,” Cognition and Instruction 24(2), 171-209; Uri
Wilensky and Mitchel Resnick, 1999, “Thinking in Levels: A Dynamic Systems Approach to
Making Sense of the World,” Journal of Science Education and Technology 8 (1):3-19; Uri
Wilensky, 2001, “Modeling Nature's Emergent Patterns with NetLogo,” Proceedings of the
Eurologo 2001 Conference, Linz, Austria; J.L. Kolodner et al, 2003, “Problem-Based
Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting
Learning by Design into Practice,” Journal of the Learning Sciences 12(4):495-548; S.
Puntambekar and J.L. Kolodner , 2005, “Toward Implementing Distributed Scaffolding:
Helping Students Learn Science by Design,” Journal of Research in Science Teaching
42(2):185-217; Y . Kali and M.C. Linn, 2009, “Designing Effective Visualizations for
Elementary School Science,” Elementary School Journal 109(5):181-198; M.C. Linn, H.S.
Lee, R. Tinker , F . Husic, and J.L. Chiu, 2006, “Teaching and Assessing Knowledge
Integration in Science,” Science 313: 1049-1050; Y .B. Kafai, 2006, “Playing and Making
Games for Learning: Instructionist and Constructionist Perspectives for Game Studies,”

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

56

also increase the effectiveness of teachers by synthesizing results from embedded
assessments, allowing teachers to monitor progress in real time, and handling routine tasks.

Exploring these questions will be a major focus of the committee’s second workshop.

5.5 WHAT IS THE PROPER INSTITUTIONAL ROLE OF THE COMPUTER SCIENCE
COMMUNITY WITH RESPECT TO COMPUTATIONAL THINKING?

Although there is obviously a close (though not fully understood) cognitive and

intellectual connection between computational thinking and computer science as a subject
of study, the role of computer science as a discipline and as a community of individuals who
call themselves computer scientists in defining and structuring the content of computational
thinking is much less clear .

For example, Robert Constable noted that today, university-level discussions
regarding computational thinking education (or , more precisely, computing) are usually set
forward by a department of X that believes in the value of computing as a tool for effective
study of X—and focus on computational thinking in the context of X. But these efforts
rarely focus on the abstractions and concepts that computer scientists believe cut across
specific disciplinary applications of computational thinking.

Constable further pointed out that even in colleges of computing and information,
the discussion of computational thinking does not always reach out to the entire university.
This disconnect occurs despite the attempts of some of these colleges to “teach every
undergraduate” about computing and digital information by way of general education
requirements.

Given this disconnect, he argued, it is thus not surprising that the development of K-
12 computational thinking education has a certain inchoate quality—if the leading schools of
computing and departments of computer science don’t know how to talk about
computational thinking, how can others define the content of “computational thinking for
everyone”?

A second issue relates to disciplinary “ownership” of computational thinking.
Because computational thinking is a critical skill in many disciplines, there are already a few
stakes in the ground from a range of disciplines, such as biology, statistics, and physics.
This fact led several workshop participants to note the importance of refraining from turf
wars over which disciplines own what with respect to computational thinking.

They felt that there were a number of areas of overlap and that this was a positive
sign. These speakers were reassured by the overlap, believing that it might be a strength
that everyone wants to claim computational thinking for their own field.

Games and Culture 1(1):36-40; Y.B. Kafai and C.C. Ching, 2001, “Affordances of
Collaborative Software Design Planning for Elementary Students’ Science Talk,” The Journal
of the Learning Sciences 10(3):323–363. The papers listed in this footnote are a small
fraction of the research performed on technology-enhanced learning in the last decade—
what is common to the papers above is that because they were authored, in part, by a
member of the NRC committee for the workshop reported in this volume, they were more
familiar to the committee.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

57

Another set of workshop participants noted concern that a lack of disciplinary
ownership could make it difficult to build support and a community sense of responsibility
for the education of the next generation. They were concerned that other disciplines
claiming ownership of key components of computational thinking can slow its development
as a scientific paradigm in and of itself.

Some argued that computational thinking can help advance a number of disciplines
and encourage innovation. The inverse situation—lack of deep computational understanding
and lack of technical communication skills—might even give rise to the stifling of innovation.
This is a key concern according to columnist Adam C. Engst. In the article entitled “Have
We Entered a Post-Literate Technological Age?” he states, “My more serious concern with
our society's odd fluency with a technology that we cannot easily communicate about is that
it might slowly stifle innovation.”4 As an example, he notes that a person who is able to
fluidly navigate an application does not necessarily understand anything about what is going
on underneath the hood.

Others argued that computational thinking is inherently multidisciplinary. To engage
in computational thinking, one must reason about something. By claiming that
computational thinking can benefit all disciplines, one endorses the idea that computational
thinking will evolve as it is used in varied disciplines. In addition, the disciplines using
computational thinking will develop in novel directions as a result of using computational
thinking.

4 Adam C. Engst, 2009, “Have We Entered a Post-Literate Technological Age?”

August 18, TidBITS.com. Available at http://db.tidbits.com/article/10493.

http://db.tidbits.com/article/10493

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

59

6. Next Steps

Discussions held at the February 2009 workshop did not reveal general agreement

among workshop participants about the precise content of computational thinking, let alone
its structure. Nevertheless, the lack of explicit disagreement about its elements could be
taken as reflecting a shared intuition among workshop participants that computational
thinking, as a mode of thought, has its own distinctive character .

Building on this shared intuition, it is fair to say that most workshop participants
agreed that more deliberation is necessary to achieve greater clarity about what is
encompassed under the rubric of computational thinking and how these elements are
structured relative to each other . Toward this end, workshop participants thought that the
second workshop would have value. Scheduled to occur in early 2010 and devoted to
exploring pedagogy and how best to expose students to the ideas of computational
thinking, the deliberations of this follow-on workshop will be valuable in shedding additional
light on the content and structure of computational thinking for three reasons.

First, the diversity of views on the nature of computational thinking allows a great
deal for exploration and innovation within the boundaries of a shared intuition, even if that
intuition was not made precise in the first workshop.

Second, when designing courses, educators often reveal their beliefs about what is
central to the subjects in question. Thus, a consideration of provocative and innovative
examples of courses and curricular material related to computational thinking is likely to
provide valuable further insights into individual perspectives on that topic.

Lastly, and as noted at the end of Section 4.1, the technological substrate has
proliferated by orders of magnitude since the late 1960s. Young people today—the targets
of K-12 education—are correspondingly far more familiar with various manifestations of
information technology and thus also more familiar with different contexts in which
computational thinking can be relevant. It is hoped that the the pedagogical focus of the
second workshop will shed additional light on some of these different contexts.

For these reasons, the committee looks forward to the second workshop with
anticipation.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

61

Appendix A

Workshop Agenda

FEBRUARY 19, 2009

8:30 - 8:45 AM

Welcome and Housekeeping
 Marcia Linn, University of California, Berkeley, Committee Chair

8:45 - 10:30 AM

Panel 1—The Scope and Nature of Computational Thinking

• How is computational thinking different from mathematical
thinking?
• How is it different from quantitative reasoning?
• How is it different from scientific thinking?
• How is it different from fluency with information technology?

Presenters:
 Jeannette Wing, National Science Foundation
 William Wulf, University of Virginia
 Gerald Sussman, Massachusetts Institute of Technology
 Peter Lee, Carnegie Mellon University

Committee respondent: Larry Snyder

10:30 - 12:15 PM

Panel 2—Computational Thinking Everywhere (Part I)

• What kinds of problems require computational thinking?
What are some examples?
• How, if at all, does computational thinking vary by
discipline? What would be the nature of computational thinking for
physicists, biologists, engineers, lawyers, physicians, historians,
sociologists, teachers, accountants, homemakers, bus drivers, and
so on?
• What are the exposures and experiences needed to
develop the level of computational thinking needed in various
disciplines?
• What are contemporary issues facing the nation that would
benefit from greater development of computational thinking?
• What is the value of computational thinking for
nonscientists?
• How, if at all, would widespread facility with computational
thinking enhance the productivity of U.S. workers?
• How do we best illustrate the power of computational
thinking?

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

62

Presenters:
 Kevin Ashley, University of Pittsburgh
 Chris Hoffman, Purdue University
 Alan Kay, Viewpoints Research Institute, Inc.
 Richard Lipton, Georgia Tech
 Robert Sproull, Sun Microsystems, Inc.

Committee respondent: M. Brian Blake

12:15 - 1:15 PM

Working Lunch—Other Related Ongoing Efforts

 Andrew Bernat: CRA Education Committee
 Peter Denning: Great Principles of Computing (via video
conference)

1:15 - 3:00 PM

Panel 3—Computational Thinking Everywhere (Part II)

Presenters:

 Andrew McGettrick, University of Strathclyde (invited)
 Edward Fox, Virginia Tech
 Ian Foster, Argonne National Laboratory/University of Chicago
 (via conference call)
 Paulo Blikstein, Northwestern University
 Eric Roberts, Stanford University

Committee respondent: Robert Constable

3:00 - 3:10 PM

Break

3:10 - 4:40 PM

Panel 4–Technology and Computational Thinking (Show and
Tell)

• What affordances are provided by new technologies for
computational thinking?

• What is the role of information technology in imparting
computational thinking skills?

• What parts of computational thinking can be taught without
the use of computers? Without the skills of computer
programming?

Participants:
 Mitchel Resnick, Massachusetts Institute of Technology
 Ken Kahn, Oxford University
 David Moursund, University of Oregon

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

63

Committee respondent: Janet Kolodner

4:40 - 4:45 PM

Break

4:45 - 5:15 PM

Other Related Ongoing Efforts
 Tim Bell, New Zealand Computer Science Unplugged (via video
 conference)

5:15 - 5:30 PM

Wrap-up

5:30 Adjourn Day-One Public Sessions
5:30 - 6:15 PM

Reception

6:15 - 8:15 PM

Working Dinner in Small Groups
[Limited to Committee, Panel Participants, and Staff]

• Homework assignment–What is the core of computational
thinking? What are the fundamental principles of computational
thinking? What concepts are derivative from the fundamentals?

• Are there multiple decompositions of computational thinking
into fundamental and derivative parts? What are some examples?

• How, if at all, can computational thinking be decomposed
into an intellectual hierarchy?

FEBRUARY 20, 2009

8:30 - 8:35 AM Welcome and Housekeeping

 Marcia Linn, University of Berkeley, Committee Chair

8:35 - 10:00 AM Panel 5–Report-back on homework assignments:

Committee respondent: Alfred Aho

10:00 - 10:15 AM Break

10:15 - 11:45 AM Panel 6–Bridging into Education

• Are the fundamental principles of computational thinking
the easiest to grasp? If so, why? If not, why not?

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

64

• Are the fundamental principles the logical starting point for
the teaching of computational thinking? If so, why? If not, why
not?

Participants:
 Dor Abrahamson,University of California, Berkeley
 Owen Astrachan, Duke University
 Lenore Blum, Carnegie Mellon University
 Andy diSessa, University of California, Berkeley

Committee respondent: Uri Wilensky

11:45 - 12:45 PM Working Lunch—Computer Science Advanced Placement
Efforts
 Jan Cuny, National Science Foundation

12:45 - 2:15 PM Panel 7—Related Best Practices in Teaching/Pedagogy

• How do we engage all learners in computational thinking?
• What are the exposures and experiences needed to
develop computational thinking?
• What is the role of the computer in instruction? Where does
programming fit into computational thinking?

Presenters:
 Roy Pea, Stanford University
 Allan Collins, Northwestern University
 Ursula Wolz, The College of New Jersey
 Joshua Danish, Indiana University

Committee respondent: Yasmin Kafai

2:15 - 2:30 PM Break

2:30 - 4:30 PM Discussion and Wrap-up

• Committee members summarize their individual reactions
• Floor opened to other workshop participants

4:30 PM Adjourn

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

65

Appendix B

Short Biographies of Committee Members,

Workshop Participants, and Staff

B.1 Committee

Marcia C. Linn (Chair) is a professor specializing in education in mathematics, science, and
technology in the Graduate School of Education at the University of California, Berkeley. She
directs the NSF-funded Technology-enhanced Learning in Science (TELS) center . She is a
member of the National Academy of Education and a fellow of the American Association for
the Advancement of Science, the American Psychological Association, and the Center for
Advanced Study in Behavioral Sciences. Board service includes the American Association for
the Advancement of Science board, the Graduate Record Examination Board of the
Educational Testing Service, the McDonnell Foundation Cognitive Studies in Education
Practice board, and the Education and Human Resources Directorate at the National Science
Foundation. Linn earned a Ph.D. in educational psychology from Stanford University.

Alfred V. Aho (NAE) is the Lawrence Gussman Professor of Computer Science and
vicechair of undergraduate education for the Computer Science Department at Columbia
University. Previously, he conducted research at Bell Laboratories from 1963 to 1991, and
again from 1997 to 2002 as vice president of the Computing Sciences Research Center .
Aho's current research interests include quantum computing, programming languages,
compilers, and algorithms. He is part of the Language and Compilers research group at
Columbia. He is widely known for his development of the AWK programming language with
Peter J. Weinberger and Brian Kernighan (the “A” stands for "Aho"), and his co-authorship
of Compilers: Principles, Techniques, and Tools (the "Dragon book") with Ravi Sethi and
Jeffrey Ullman. He wrote the initial versions of the Unix tools egrep and fgrep. He is also a
co-author (along with Jeffrey Ullman and John Hopcroft) of a number of widely used
textbooks on several areas of computer science, including algorithms and data structures,
and the foundations of computer science. He is a past president of ACM's Special Interest
Group on Algorithms and Computability Theory. Aho has chaired the Advisory Committee for
the Computer and Information Sciences Directorate of the National Science Foundation. He
has received many prestigious honors, including the IEEE's John von Neumann Medal and
membership in the American Academy of Arts and Sciences. Aho was elected to the National
Academy of Engineering in 1999 for contributions to the fields of algorithms and
programming tools. Aho earned his Ph.D. in electrical engineering and computer science
from Princeton University.

M. Brian Blake is a professor of computer science and associate dean of engineering at
the University of Notre Dame. His research interests include the investigation of automated
approaches to sharing information and software capabilities across organization boundaries,

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

66

sometimes referred to as enterprise integration. His investigations cover the spectrum of
software engineering: design, specification, proof of correctness,
implementation/experimentation, performance evaluation, and application. Blake’s long-
term vision is the creation of adaptable software entities or software agents that can be
deployed on the Internet and, using existing resources, manage the creation of new
processes, sometimes referred to as interorganizational workflow. He has several ongoing
projects that make incremental progress toward this long-term vision. In addition, he
conducts experimentation in the areas of software engineering education and software
process and improvement to determine the most effective methods for training students
and professionals to develop module systems that by nature are distributed. Blake has
consulted for such companies as General Electric, Lockheed Martin, General Dynamics, and
The MITRE Corporation. He has published more than 95 refereed journal papers and
conference proceedings in the areas of service-oriented computing, agents and workflow,
enterprise integration, component-based software engineering, distributed data
management, and software engineering education. Blake’s work has been funded by the
Federal Aviation Administration, the MITRE Corporation, the National Science Foundation,
DARPA, the Air Force Research Laboratory, SAIC, and the National Institutes of Health. He
earned his doctorate in information technology and computer science from George Mason
University.

Robert Constable is the dean of the Faculty of Computing and Information Science.
Formerly he was the chair of the Computer Science Department for 6 years. He also heads a
research group in automated reasoning and formal methods in the Computer Science
Department, where he is a professor . Constable is a graduate of Princeton University, where
he worked with Alonzo Church, one of the pioneers of computer science. He did his Ph.D.
work at the University of Wisconsin with Stephen Cole Kleene, a Ph.D. student of Church
and another pioneer of computer science. Church traces his mathematical lineage back to
Gottfried Wilhelm Leibniz, one of the first logicians interested in mechanical computation
and the digitization of human knowledge. Constable joined the Cornell University faculty in
1968. He has supervised more than 43 Ph.D. students in computer science. He is known for
work in connecting programs and mathematical proofs that has led to new ways of
automating the production of reliable software. This work is known by the slogan “proofs as
programs,” and it is embodied in the Nuprl (“new pearl”) theorem prover . He has written
three books on this topic as well as numerous research articles. Since 1980 he has headed a
project that uses Nuprl to design and verify software systems, instances of which are still
operational in industry and science. Currently he is working on extending this programming
method to concurrent processes, realizing the notion of “proofs as processes.” In 1999 he
became the first dean of the Faculty of Computing and Information Science, a unit that
includes the Computer Science Department, the Department of Statistical Science, the
Information Science Program, and the Program in Computer Graphics. It also sponsors the
undergraduate major and graduate field in computational biology.

Yasmin B. Kafai is a professor at the Graduate School of Education, University of
Pennsylvania. In addition, she spent more than a decade on the faculty at the UCLA
Graduate School of Education and Information Studies. As a learning scientist, she has
researched and developed media-rich software tools and environments, most recently
Scratch, together with researchers at the MIT Media Lab, that support youth in schools and

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

67

community centers in becoming designers of games, simulations, and virtual worlds. As part
of her policy initiatives, she wrote Under the Microscope: A Decade of Gender Equity
Interventions in the Sciences (2004) and participated in the national commission that
produced the report Tech-Savvy Girls: Educating Girls in the Computer Age (2000) for the
American Association of University Women. She also briefed the Computer Science and
Telecommunications National Research Council report Being Fluent with Information
Technology (National Academy Press, Washington, D.C., 1999). While conducting research
at the Massachusetts Institute of Technology Media Laboratory, she received her Ed.D. in
human development and psychology from Harvard University.

Janet L. Kolodner is a Regents’ Professor in the School of Interactive Computing at
Georgia Institute of Technology. Her research over the past 30 years has addressed a wide
variety of issues in learning, memory, and problem solving, both in computers and in
people. During the 1980s, she pioneered the computer method called case-based reasoning,
which allows a computer to reason and learn from its experiences. The first case-based
design aids (CBDA) came from her lab. Archie-2, for example, helped architecture students
with conceptual design. During the early 1990s, she used the cognitive model implied by
case-based reasoning to address issues in creative design. JULIA planned meals, Creative
JULIA figured out what to do with leftover rice, IMPROVISOR did simple mechanical design,
and ALEC simulated Alexander Graham Bell in his invention of the telephone. Later in the
1990s, she used the cognitive model in case-based reasoning to guide the design of a
science curriculum for middle school. Learning by Design™ is a design-based learning
approach and an inquiry-oriented project-based approach to science learning that has
children learn science from their design experiences. The sequencing of activities in the
classroom encourages students to reflect on their design and science experiences in ways
that case-based reasoning says are appropriate for integrating them well into memory.
Learning by Design curriculum units and the sequencing structures in Learning by Design
are being integrated into a full 3-year middle-school science curriculum called Project-Based
Inquiry Science (PBIS), to be published in time for use in the 2008-2009 academic year .
Most recently, Kolodner’s research uses what she learned in designing Learning by Design
to create informal learning environments to help middle schoolers come to think of
themselves as competent scientific reasoners. In Kitchen Science Investigators, fifth and
sixth graders learn science in the context of cooking. In Hovering Around, they learn about
motion and forces, about airflow, and about how to explain in the context of designing
hovercraft. Kolodner is founding editor in chief of the Journal of the Learning Sciences and
is a founder and first executive officer of the International Society for the Learning Sciences.
She has headed up the Cognitive Science Program at Georgia Tech and headed an
organization called EduTech in the mid-1990s whose mission was to use what we know
about cognition to design educational software and integrate it appropriately into
educational environments. She has a B.S. from Brandeis University in math and computer
science and an M.S. and a Ph.D. in computer science from Yale University.

Lawrence Snyder is a professor of computer science and engineering at the University of
Washington in Seattle. Snyder's research has focused on parallel computation, including
architecture, algorithms and languages. He has served on the faculties of Yale and Purdue
Universities, and has had visiting appointments at UW, Harvard, MIT , Sydney University, the
Swiss Technological University, the University of Auckland, and Kyoto University. In 1980 he

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

68

invented programmable interconnect, a method to dynamically configure on-chip
components, and a technology used today for FPGAs. In 1990 he was co-designer of Chaos
Router , a randomizing adaptive packet router . He was the principal investigator of the ZPL
language design project, the first high-level parallel language to achieve "performance
portability" across all parallel computer platforms. Snyder is the author of Fluency with
Information Technology: Skills, Concepts and Capabilities, a textbook for non-techie college
freshmen that teaches fundamental computing concepts; the book is in its third edition.
With former Ph.D. student Calvin Lin (University of Texas, Austin), he has written Principles
of Parallel Programming, published in 2008. Snyder was a three-term member of the
Computer Research Association Board of Directors, developing a series of best-practices
white papers. He chaired the NSF CISE Advisory Board as well as several CISE directorate
oversight panels and numerous review panels. The two National Research Council studies
that he has chaired, produced influential reports – Academic Careers for Experimental
Computer Scientists and Engineers and Being Fluent with Information Technology (1999).
He served three terms on the NRC's Army Research Laboratory Technical Advisory Board.
He serves on ACM's Education Board, has been general chair or program committee chair of
several ACM and IEEE conferences, and he is a fellow of both the ACM and IEEE. He
received a B.A. from the University of Iowa in mathematics and economics and his Ph.D.
from Carnegie Mellon University as a student of A. Nico Habermann.

Uri Wilensky is professor of Learning Sciences and Computer Science at Northwestern
University and holds appointments in the cognitive science program and in complex
systems. He is the founder and current director of the Center for Connected Learning and
Computer-Based Modeling and also a founder and member of the governing board of the
Northwestern Institute on Complex Systems (NICO). His most recent projects focus on
developing tools that enable users (both researchers and learners) to simulate, explore and
make sense of complex systems. His NetLogo agent-based modeling software is in
widespread use worldwide. Prior to coming to Northwestern, he taught at Tufts University
and MIT and was a research scientist at Thinking Machines Corporation. Dr . Wilensky is a
founder and an executive editor of the International Journal of Computers for Mathematical
Learning. His research interests include computer-based modeling and agent-based
modeling, STEM education, mathematics in the context of computation, and complex
systems. He is a recipient of the National Science Foundation’s Career Award as well as the
Spencer Foundation’s Post-Doctoral Award. He has directed numerous NSF research
projects focused on developing computer-based modeling tools and studying their use.
Among these tools are multi-agent modeling languages, such as StarLogoT and NetLogo,
Model-based curricula such as GasLab, ProbLab, NIELS and BEAGLE Evolution and
Participatory Simulation Toolkits such as Calc-HubNet and Computer-HubNet. The tools
enable learners to explore and create simulations of complex phenomena across many
domains of natural and social science and, through creating and exploring such simulations,
deepening their understanding of core scientific concepts. Many of these tools are also in
use by researchers across a wide variety of domains including the natural sciences, social
sciences, business and medicine. By providing a “low threshold” language for exploring and
constructing models, Wilensky hopes to promote modeling literacy -- the sharing and
critiquing of models in the scientific community, in education and in the public at large. Dr .
Wilensky did his undergraduate and graduate studies in mathematics, philosophy and

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

69

computer science at Brandeis and Harvard Universities and received his Ph.D. in media arts
and sciences from the Massachusetts Institute of Technology.

B.2 Workshop Participants

Dor Abrahamson specializes in the study of mathematical intuition, reasoning, and
learning from the synergistic perspectives of cognitive and socio-cultural theory. He
investigates in particular the roles that mediated, reflexive interaction with a range of
technologies plays in students’ content-focused and intellectual development, which he
views as trajectories from intuition to inscription. A core aspect of Abrahamson’s
professional practice is the design, production, implementation, and evaluation of innovative
mixed-media concept-targeted curricular artifacts aligned with the emerging empiricism of
individual cognition in social context. Operating in design-based research methodology,
Abrahamson is particularly interested in instances of spontaneous multimodal coordination
of distributed epistemic and material resources and in the roles of teachers in facilitating
conceptual insight. Abrahamson also explores the impact of complexity studies’ perspectives
and methodologies on education research and has been arguing for the use of agent-based
modeling to advance theories of individual learning in social context. During his tenure as a
Spencer Postdoctoral Fellow, Abrahamson developed computer-based modules for learning
probability. He has published in the Handbook of Mathematical Cognition, International
Journal of Computers for Mathematical Learning (and is a member of the editorial board),
Educational Studies in Mathematics, Cognition & Instruction , For the Learning of
Mathematics, Mathematics Teaching in the Middle School, and the Journal of Statistics
Education, and contributes regularly to major international conferences. He received his
M.A. in cognitive psychology in 2000 from Tel Aviv University, Israel, and a Ph.D. in learning
sciences in 2004 from Northwestern University.

Kevin Ashley holds interdisciplinary appointments as a faculty member of the Graduate
Program in Intelligent Systems at the University of Pittsburgh, a senior scientist at the
Learning Research and Development Center , a professor of law, and adjunct professor of
computer science. His goals are to contribute to artificial intelligence (AI) research on case-
based and analogical reasoning, argumentation, and explanation and to develop
instructional and information retrieval systems for professionals in case-based domains such
as law and ethics. Currently, he and his students are pursuing research projects in
automatically indexing legal case texts, engaging law students in online argumentation
dialogues, intelligent retrieval of ethics codes and cases, and web-based tutoring to help
students get more from reading ethics cases. For his Ph.D., he developed an AI CBR
system, HYPO, which reasons by analogy to past legal cases, makes arguments about legal
fact situations, and poses hypothetical cases. MIT Press/Bradford Books published his book,
based on his dissertation, entitled Modeling Legal Argument: Reasoning with Cases and
Hypotheticals. In April 1990, the National Science Foundation selected Professor Ashley as
a Presidential Young Investigator , and in 2002 he was selected as a Fellow of the American
Association of Artificial Intelligence. From June 1988 through July 1989, he was a visiting
scientist at the Thomas J. Watson Research Center , Yorktown Heights, New York. For 4
years prior to his computer science graduate work, he was an associate attorney at White &
Case, a large Wall Street law firm. While a philosophy major at Princeton, he was a research

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

70

assistant for Professor Walter Kaufmann. He received a B.A. in philosophy (magna cum
laude) from Princeton University in 1973, a J.D. (cum laude) from Harvard Law School in
1976, and a Ph.D. in computer science in 1988 from the University of Massachusetts, where
he held an IBM Graduate Research Fellowship.

Owen Astrachan is a professor of the practice of computer science at Duke University and
the department's director of undergraduate studies for teaching and learning. He received
an NSF CAREER award in 1997 to incorporate design patterns in undergraduate computer
science curricula, received an IBM Faculty Award in 2004 to support componentization in
both software and curricula, and was one of two inaugural NSF CISE Distinguished
Education Fellows in 2007, awarded to revitalize computer science education using case-
and problem-based learning. Astrachan's research interests have been built on
understanding how best to teach and learn about object-oriented programming, software
design, and computer science in general; he is now working on developing a portfolio of
substantial, interdisciplinary problems that help explain how computer science is relevant to
students in the social and natural sciences. Astrachan received Duke University's 1995
Robert B. Cox Distinguished Teaching in Science Award, an Outstanding Instructor Award
while teaching on sabbatical at the University of British Columbia in 1998, and Duke's 2002
Richard K. Lublin award for "ability to engender genuine intellectual excitement, ability to
engender curiosity, knowledge of the field and ability to communicate that knowledge." He
earned his A.B. degree with distinction in mathematics from Dartmouth, and as his MAT
(Math), M.S., and Ph.D. in computer science from Duke.

Tim Bell is an Associate Professor in the department of Computer Science and Software
Engineering at the University of Canterbury in Christchurch, New Zealand. His current
research interests include Computers and Music, Public Understanding of (Computer)
Science, and educational applications of podcasting. He received the Science Communicator
Award from the NZ Association of Scientists in 1999, and an inaugural New Zealand Tertiary
Teaching Excellence Award in 2002. He has appeared with his "Computer Science
Unplugged" show at the Edinburgh International Science Festival, the Dunedin International
Science Festival, and the Australian Science Festival. He is also a qualified musician, and
performs regularly on instruments that have black-and-white keyboards. He is co-author of
the books "Text Compression" and "Managing Gigabytes".

Andrew Bernat was a founding member and chair of the Computer Science Department at
the University of Texas at El Paso (spending 20 years there) and a former NSF program
director . He is currently the Executive Director of the Computing Research Association,
whose mission is to strengthen research and education in the computing fields, expand
opportunities for women and minorities, and improve the public’s and policymakers’
understanding of the importance of computing and computing research in our society. In
recognition of "his success in creating arguably the strongest computer science department
at a minority-serving institution", the Computing Research Association honored him with the
1997 A. Nico Habermann Award.

Paulo Blikstein is an assistant professor at Stanford University's School of Education, with
a courtesy appointment in the Computer Science Department. His research focuses on
computational literacy, low-cost educational technologies for low-income settings, and STEM

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

71

education. His work cuts across age groups – he has worked extensively with inner-city
students in developing countries, such as Brazil, Mexico, Senegal, and Costa Rica, but also
with undergraduates in elite U.S. institutions. His research tries to bring the most cutting-
edge computational tools to the classroom, creating environments for students to
authentically engage in advanced, deep scientific inquiry.

Lenore Blum is Distinguished Career Professor of Computer Science at Carnegie Mellon
University where she co-directs the ALADDIN Center for Algorithm Adaptation,
Dissemination and Integration, is a faculty advisor to the student organization
Women@SCS, and is the principal investigator for the Google-funded CS4HS program for
high school teachers. Her most recent creation and passion is Project Olympus, a high-tech
innovation center that she directs at Carnegie Mellon. In 2009, the impact of this work was
acknowledged by the Carnegie Science “Catalyst” award. Blum’s research, from her early
work in model theory and differential fields (logic and algebra) to her more recent work in
developing a theory of computation and complexity over the real numbers (mathematics
and computer science), has focused on merging seemingly unrelated areas. She received
her doctorate in mathematics from MIT the same year Princeton University first allowed
women to enter its graduate program. She then taught at the University of California,
Berkeley and at Mills College, where she founded the Department of Mathematics and
Computer Science (the first computer science department at a women’s college), served as
its head or co-head for 13 years, and became the first holder of the Letts-Villard Chair . In
1988 she joined the Theory Group of the newly formed International Computer Science
Institute in Berkeley and from 1992 to 1996 also served as deputy director of the
Mathematical Sciences Research Institute. Blum spent 2 years, 1996-1998, spanning the
historic handover of Hong Kong from Britain to China at CityU of Hong Kong as visiting
professor of mathematics and computer science where she completed her book, Complexity
and Real Computation, there with her colleagues. She has served the professional
community in numerous capacities, including as president of the Association for Women in
Mathematics, as vice president of the American Mathematical Society, and as a member of
numerous committees, including the MIT Visiting Committee for Mathematics and the ACM
SIGACT Committee for the Advancement of Theoretical Computer Science. She is a Fellow
of the American Association for the Advancement of Science. She received her Ph.D. in
mathematics from MIT in 1968.

Allan Collins is a professor emeritus of education and social policy at Northwestern
University. He is a member of the National Academy of Education and a fellow of the
American Association for Artificial Intelligence, the Cognitive Science Society, the American
Educational Research Association, and the American Association for the Advancement of
Science. He served as a founding editor of the journal Cognitive Science and as first chair of
the Cognitive Science Society. He has studied teaching and learning for more than 30 years
and has written extensively on related topics. He is best known in psychology for his work
on how people answer questions, in artificial intelligence for his work on reasoning and
intelligent tutoring systems, and in education for his work on situated learning, inquiry
teaching, design research, and cognitive apprenticeship. From 1991 to 1994 he was co-
director of the U.S. Department of Education’s Center for Technology in Education.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

72

Jan Cuny is a program officer at the National Science Foundation, heading the Broadening
Participation in Computing program. Before coming to NSF in 2004, she was a faculty
member in computer science at Purdue University, the University of Massachusetts, and the
University of Oregon. Cuny has been involved for many years in efforts to increase the
participation of women in computing research. She was a longtime member of the
Computing Research Association’s Committee on the Status of Women (CRA-W), serving
among other activities as a CRA-W co-chair , a mentor in its Distributed Mentoring Program,
and a lead on its Academic Career Mentoring Workshop, Grad Cohort, and Cohort for
Associated Professors projects. She was also a member of the Advisory Board for Anita Borg
Institute for Woman and Technology, the leadership team of the National Center for Women
in Technology, the executive committee of the Coalition to Diversify Computing, and the
ACM Education Council She wasprogram chair of the 2004 Grace Hopper Conference and
the general chair of the 2006 conference. . For her efforts with underserved populations,
Cuny was a recipient of one of the 2006 ACM President’s Awards and the 2007 CRA A. Nico
Habermann Award.

Joshua Danish’s research examines the role of external representations, such as
drawings, maps, and computer simulations, in supporting cognition and learning. To study
learning and development in classroom contexts, he employs cultural historical activity
theory to articulate the influence of various mediators – the physical tools, rules, division of
labor , and local community – on student’s activities as they learn and develop. Recent
research has included the development and study of BeeSign, a computer simulation and
accompanying curriculum that engages kindergarten and first-grade students in learning
about the nectar-gathering behavior of honeybee hives; the Community Mapping Project in
which 7th grade students learned basic statistics concepts using the MyWorld Geographical
Information Systems mapping software to study local community issues; and the Semiotic
Pivots and Activity Spaces for Elementary Science project, which takes advantage of sensing
technologies and augmented reality tools to support first and second grade students in
learning about physical science concepts.

Peter J. Denning is a Distinguished Professor at the Naval Postgraduate School in
Monterey, California. He chairs the Computer Science Department and directs the
Cebrowski Institute, an interdisciplinary research center for innovation and information
superiority. In the 1990s he was at George Mason University, where he was vice provost,
associate dean, Computer Science department chair , and founder of the Center for the New
Engineer . In the 1980s, he was the founding director of the Research Institute for
Advanced Computer Science at NASA-Ames and was co-founder of CSNET. He received a
Ph.D. from MIT and a B.E.E. from Manhattan College. He was president of the Association
for Computing Machinery (ACM), in 1980-1982. As chair of the ACM publications board in
1992-1998, he was project leader for the ACM digital library, now the ACM's crown jewel.
In 1967 he discovered the locality principle for referencing storage objects and used it to
invent the influential working set model for program behavior; his original paper was named
to the ACM SIGOPS Hall of Fame in 2005. He helped establish virtual memory as a
permanent part of operating systems. He contributed important extensions to operational
analysis, an approach to computer system performance prediction. He leads the Great
Principles of Computing project, which is identifying the scientific theories of computing and
applying them to curriculum innovation. He also co-leads an Innovation project that has

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

73

identified and teaches the seven foundational practices of innovation. He has published 7
books and 315 articles on computers, networks, and their operating systems. He is working
on two more books, one on the foundational practicess of innovation and the other on the
great principles of computing. In 2002, he was named one of the top five best teachers at
George Mason University and the best teacher in the School of Information Technology and
Engineering. In 2003, he received one of Virginia's 10 outstanding faculty awards. He
holds three honorary degrees, three professional society fellowships, two best-paper
awards, three distinguished service awards, the ACM Outstanding Contribution Award, the
ACM SIGCSE Outstanding CS Educator Award, and the prestigious ACM Karl Karlstrom
Outstanding Educator Award. In 2007 ACM gave him a special award for 40 years of
continuous volunteer service, and the NSF gave him one of two Distinguished Education
Fellow awards.

Andrea diSessa is the Corey Professor of Education and a member of the National
Academy of Education. His research centers around conceptual and experiential knowledge
in physics, and large-scale and deep implications of the use of computers in education
(“new literacies”). His current work focuses on student ideas concerning patterns of
behavior and control—aka dynamical systems theory. He was a fellow at the Center for
Advanced Study in the Behavioral Sciences in 1997-1998 and 2007-2008. He wrote the
books Changing Minds: Computers, Learning and Literacy (2000) and Turtle Geometry: The
Computer as a Medium for Exploring Mathematics (with H. Abelson, 1981), and he edited
the volume Computers and Exploratory Learning (with C. Hoyles, R. Noss, and L. Edwards,
1995). He received his Ph.D. in physics from MIT , and an A.B., also in physics, from
Princeton University.

Ian Foster has been appointed director of the Computation Institute. The Computation
Institute was created by the University of Chicago and Argonne National Laboratory in 1999
in recognition of the increasingly central role that computation plays in many disciplines of
the sciences, medicine, and the humanities. Foster joined Argonne's Mathematics and
Computer Science Division in 1989 and has most recently served as associate division
director and senior scientist. He is also the Arthur Holly Compton Distinguished Service
Professor of Computer Science at the University of Chicago. His research interests are in
distributed and parallel computing, and computational science. He has published six books
and more than 300 articles and technical reports in these areas. The Distributed Systems
Laboratory that he heads at Argonne and Chicago pursues research in these areas and also
development of the Globus Toolkit, open-source Grid software used widely in business and
science.

Edward Fox, after almost a year running the computer operations at the International
Institute for Tropical Agriculture, Ibadan, Nigeria, started teaching at Virginia Tech in 1983.
Since 1987 he has worked on electronic theses and dissertations; he is executive director of
the Networked Digital Library of Theses and Dissertations. His research, teaching, and
service have focused on information, including searching, multimedia/hypertext, and digital
libraries. Fox is starting his 103rd funded research grant; these have included working with
many disciplines, including animal care, archaeology, auto parts, chemistry, electronic
publishing, fisheries, geography, gerontology, health, library and information science,
physics, and sociology. Two current NSF grants supporting education include(1) “Living In

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

74

the KnowlEdge Society (LIKES),” which promotes connecting computing with all other
disciplines to ensure better preparation of college students, and (2) “Ensemble,” an NSDL
pathways project that aims to help “K-gray” learning related to computing. Fox completed
his B.S. in electrical engineering and computer science in 1972 at M.I.T . He also pursued
graduate degrees in information retrieval at Cornell from 1978 to 1982.

Christopher Hoffmann is well known for his work in geometric computing and geometric
constraint solving. The simulations of the 9/11 attacks on the Pentagon and on the WTC-1
building, generated worldwide media attention. His current projects include shape modeling
for traumatic brain injury simulations, and the NSF-supported SECANT project teaching
computational thinking to science majors.

Ken Kahn is a senior researcher at Oxford University and the London Knowledge
Laboratory. His interest in programming languages for children was sparked while he was a
Ph.D. student at the MIT AI Laboratory in the 1970s. While at the MIT AI Lab, he worked
with Seymour Papert and others in the Logo Group. After 15 years as a researcher in
programming languages and AI, he returned to children’s programming languages when he
founded Animated Programs to develop ToonTalk. ToonTalk is an advanced programming
language that looks like a video game. Children as young as 3 have successfully used it to
create programs by training virtual robots to do actions such as giving birds messages to
deliver , loading up trucks, and putting things in boxes. Kahn participated in two large-scale
European projects in which children built computer games using ToonTalk. More recently he
has been designing and building construction kits that enable students to build computer
simulations by composing transparent modules.

Alan Kay, president of Viewpoints Research Institute, Inc., is one of the earliest pioneers of
object-oriented programming, personal computing, and graphical user interfaces. His
contributions have been recognized with the Charles Stark Draper Prize of the National
Academy of Engineering “for the vision, conception, and development of the first practical
networked personal computers”; the Alan. M. Turing Award from the Association for
Computing Machinery “for pioneering many of the ideas at the root of contemporary object-
oriented programming languages, leading the team that developed Smalltalk, and for
fundamental contributions to personal computing”; and the Kyoto Prize from the Inamori
Foundation “for creation of the concept of modern personal computing and contribution to
its realization.” This work was done in the rich context of Advanced Research Projects
Agency (ARPA) and Xerox Palo Alto Research Center (PARC) with many talented colleagues.
He is an elected fellow of NAE and AAAS, as well as a member of RSA, ACM, and CHM. At
Viewpoints Research Institute he and his colleagues continue to explore advanced systems
and programming design by aiming for a “Moore’s law” advance in software creation of
several orders of magnitude. Kay and Viewpoints are also deeply involved in the One Laptop
Per Child initiative that seeks to create a Dynabook-like “$100 laptop” for every child in the
world (especially in the Third world). Kay has a B.A. in mathematics and biology with minor
concentrations in English and anthropology from the University of Colorado, 1966. He also
holds an M.S. and a Ph.D. in computer science (1968 and 1969, both with distinction) from
the University of Utah.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

75

Peter Lee is the head of the Computer Science Department at Carnegie Mellon University.
In this capacity, he oversees a computing organization whose research and education
programs are consistently ranked among the top four in the nation. Prior to assuming his
current position, Lee was the vice provost for research, providing administrative oversight
and strategic guidance for Carnegie Mellon's research activities, an enterprise that exceeds
$400 million annually in sponsored research. Lee is an active researcher, educator ,
administrator , and servant to the academic community. For his research, he has received
several awards, including the ACM SIGOPS Hall of Fame Award, and election as an ACM
Fellow. He is a member of the board of directors of the Computing Research Association
(where he chairs the Government Affairs Committee), the Computing Community
Consortium Council, the Computer Science and Telecommunications Board of the National
Research Council, and the DARPA Information Science and Technology Board (of which he
is the vice chair).

Richard Lipton is a member of the National Academy of Engineering. Dr . Lipton's
professional career has been primarily in academia. He has held faculty appointments at
Yale University, the University of California at Berkeley and Princeton University before
joining the faculty in the college of Computing at Georgia Tech. In addition to his computer
science academic appointments, Dr . Lipton was the founding director of a computer science
research laboratory for the Panasonic Corporation and is currently a chief consulting
scientist at Telcordia (formerly known as Bellcore). Dr . Lipton's research is primarily, but
not exclusively focused on theory. In a recent paper which explored the power of automata-
based proof systems, he explored one way to address the NP=co-NP questions which
considered the length of proofs of tautologies in various proof systems. In this joint work
with A. Viglas he considered proof systems defined by appropriate classes of automata. Dr .
Lipton found that is general, starting from a given class of automata, it was possible to
define a corresponding proof system in a natural way. One new and more powerful proof
system was based on the class of push down automata. In this work, Dr . Lipton presented
an exponential lower bound for oblivious read-once branching programs that resulted in a
proof system more powerful than oblivious regular resolution. Dr . Lipton has also made
important contributions in the areas of program testing, software engineering and most
recently, DNA computing. This latter area combines molecular biology and computer
science. It is generally acknowledged that Dr . Lipton was one of the original pioneers in the
field of DNA computing, along with Len Adleman.

Andrew McGettrick studied Pure Mathematics at the University of Glasgow. He was
awarded a scholarship to Peterhouse, Cambridge obtaining his PhD in Pure Mathematics
and, later , Diploma in Computer Science. Throughout his career he has been at the
University of Strathclyde, promoted to professor in 1984 and served for many years as the
Head of the Department of Computer and Information Sciences. He is a Fellow of the Royal
Society of Edinburgh, a Fellow of the Institution of Engineering and Technology and a
Fellow of the British Computer Society where he is also Vice President, Qualifications and
Standards. Prof. McGettrick is the chair of the ACM Education Board and Education Council,
which provides curriculum guidelines for the key sub-disciplines of computing. He also chairs
the IET/BCS Competency Liaison Group. Professor McGettrick holds the ACM SIGCSE Award
for Lifetime Service.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

76

David Moursund is professor emeritus at the University of Oregon. He founded the
International Society for Technology in Education and served as its executive officer for 19
years. He served 6 years as the first head of the Computer Science Department at the
University of Oregon. He is the major or co-major professor of six Ph.D. students in
mathematics and 70 in the College of Education. He is the author or co-author of more than
50 books and more than 200 articles. Currently, Moursund runs a nonprofit organization
named Information Age Education. Its activities include a Wiki, a website, and a free twice-
a-month newsletter . He received his doctorate is in mathematics from the University of
Wisconsin-Madison.

Roy Pea is Stanford University Professor of the Learning Sciences and director of the
Stanford Center for Innovations in Learning. He has published widely on such topics as
distributed cognition, learning, and education fostered by advanced technologies including
scientific visualization, online communities, digital video collaboratories, and wireless
handheld computers. Much of this work concerns aspects of computational thinking on the
part of tool users. His current work is developing a new paradigm for everyday networked
video interactions for learning and communications, and for how informal and formal
learning can be better understood and connected, as co-principal investigator of the LIFE
Center funded by the National Science Foundation as one of several large-scale national
Science of Learning Centers. He is co-editor of the 2007 volume Video Research in the
Learning Sciences. He was co-author of the 2000 National Academy Press volume How
People Learn. Pea founded and served as the first director of the learning sciences doctoral
programs at Northwestern University (1991) and Stanford University (2001). He is a fellow
of the National Academy of Education, the Association for Psychological Science, The Center
for Advanced Study in the Behavioral Sciences, and the American Educational Research
Association. In 2004-2005, he was president of the International Society for the Learning
Sciences.

Mitchel Resnick, professor of Learning Research at the MIT Media Laboratory, develops
new technologies to engage people (especially children) in creative learning experiences.
His research group developed the "programmable bricks" that were the basis for the LEGO
MindStorms robotics construction kits. Resnick co-founded the Computer Clubhouse project,
an international network of after-school learning centers for youth from low-income
communities. Resnick's group recently developed a new programming language, called
Scratch, which makes it easier for children to create their own interactive stories, games,
and animations – and share their creations on the Web. In the process, children learn to
think creatively, reason systematically, and work collaboratively. He worked for 5 years as a
science and technology journalist for Business Week magazine, and he has consulted
around the world on the uses of new technologies in education. Resnick earned a B.S. in
physics from Princeton University, and an M.S. and a Ph.D. in computer science from MIT .

Eric Roberts is professor of computer science at Stanford University and past chair of the
ACM Education Board. His research focuses on computer science education, and is he the
author of five textbooks that have been used widely throughout the world. From 1998 to
2005, Roberts was principal investigator for the Bermuda Project, which developed the
computer science curriculum for Bermuda’s public secondary schools. Roberts has also
been active in professional organizations dedicated to computer science education. From

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

77

2005 to 2007, he served as co-chair of the Education Board of the Association for
Computing Machinery (ACM) and was for many years on the board of the ACM Special
Interest Group on Computer Science Education (SIGCSE). From 1998 to 2001, Roberts
served as co-chair and principal editor for the ACM/IEEE CS Joint Task Force on Computing
Curricula 2001, which published a detailed set of curriculum guidelines in December 2001.
He also chaired the ACM Java Task Force from 2004 to 2006. In 2003, Roberts received the
SIGCSE Award for Outstanding Contribution to Computer Science Education. Professor
Roberts is a fellow of the ACM and the American Association for the Advancement of
Science. He received his A.B., M.S., and Ph.D. degrees in applied mathematics from Harvard
University.

Robert Sproull is a vice president and fellow at Sun Microsystems. He founded and led the
Massachusetts branch of Sun Microsystems Laboratories for more than 10 years and is
currently serving as interim director of Sun Microsystems Laboratories. Since undergraduate
days, he has been building hardware and software for computer graphics: clipping
hardware, an early device-independent graphics package, page description languages, laser
printing software, and window systems. He has also been involved in VLSI design, especially
of asynchronous circuits and systems. Before joining Sun in 1990, he was a principal with
Sutherland, Sproull & Associates, an associate professor at Carnegie Mellon University, and
a member of the Xerox Palo Alto Research Center . He is a coauthor with William Newman of
the early text, Principles of Interactive Computer Graphics. He is an author of the recently
published book Logical Effort, which deals with designing fast CMOS circuits. Dr . Sproull was
elected in 1997 to the National Academy of Engineering for his work in computer graphics
and digital printing. He is a fellow of the American Academy of Arts and Sciences, and has
served on the US Air Force Scientific Advisory Board. Dr . Sproull received a B.A in physics
from Harvard College in 1968, and an M.S. and a Ph.D. in computer science from Stanford
University, in 1970 and 1977.

Gerald Jay Sussman is the Panasonic (formerly Matsushita) Professor of Electrical
Engineering at the Massachusetts Institute of Technology. Since 1964, he has worked on
artificial intelligence research at MIT He has also worked in computer languages and in
computer architecture and VLSI design. Using the Digital Orrery he designed, Sussman has
worked with Jack Wisdom to discover numerical evidence for chaotic motions in the outer
planets. Sussman is coauthor (with Hal Abelson and Julie Sussman) of the introductory
computer science textbook used at MIT from 1985 through 2007. The textbook (Harold
Abelson, Gerald Jay Sussman, and Julie Sussman, 1985, Structure and Interpretation of
Computer Programs, (1st edition), Cambridge, MA, MIT Press) has been translated into
French, German, Polish, Chinese, and Japanese. Sussman has pioneered the use of
computational descriptions to communicate methodological ideas in teaching subjects in
electrical circuits and in signals and systems. Over the past decade Sussman and Wisdom
have developed a subject that uses computational techniques to communicate a deeper
understanding of advanced classical mechanics. Computational algorithms are used to
express the methods used in the analysis of dynamical phenomena. Expressing the methods
in a computer language forces them to be unambiguous and computationally effective.
Sussman and Wisdom, with Meinhard Mayer , have produced a textbook, Structure and
Interpretation of Classical Mechanics, to capture these ideas. Sussman is a fellow of the
Institute of Electrical and Electronics Engineers. He is a member of the National Academy of

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

78

Engineering (NAE), and is also a fellow of the American Association for the Advancement of
Science, a fellow of the American Association for Artificial Intelligence, a fellow of the
Association for Computing Machinery (ACM), the American Academy of Arts and Sciences,
and the New York Academy of Sciences. He received both his S.B. and Ph.D. in mathematics
from the Massachusetts Institute of Technology in 1968 and 1973, respectively.

Jeannette M. Wing is the President's Professor of Computer Science in the Computer
Science Department at Carnegie Mellon University. She received her S.B., S.M., and Ph.D.
from the Massachusetts Institute of Technology. From 2004-2007, she was head of the
Computer Science Department at Carnegie Mellon. Currently on leave from CMU, she is the
assistant director of the Computer and Information Science and Engineering Directorate at
the National Science Foundation. Wing's general research interests are in the areas of
specification and verification, concurrent and distributed systems, programming languages,
and software engineering. Her current focus is on the foundations of trustworthy
computing, with specific interests in security and privacy. She published a viewpoint article
in the March 2006 issue of Communications of the Association of Computing Machinery
entitled “Computational Thinking.

Ursula Wolz is The College of New Jersey (TCNJ) Associate Professor of Computer Science
and Interactive Multimedia. Wolz is also the principal investigator for the NSF "Broadening
Participation in Computing via Community Journalism for Middle Schoolers" program, and
she was the principal investigator of a Microsoft Research project on multidisciplinary game
development. She is a recognized computer science educator with a broad range of
publications who has taught students including disabled children, urban teachers, and elite
undergraduates for more than 30 years. She is a co-founder of the Interactive Multimedia
Program at TCNJ. She has a background in computational linguistics, with a Ph.D. in
computer science from Columbia University, a master’s degree in computing in education
from Columbia Teachers College, and a bachelor's degree from MIT , where she was part of
Seymour Papert's Logo group at the very beginning of research on constructivist computing
environments.

Wm. A. Wulf is a computer scientist notable for his work in programming languages and
compilers. As of 2007, he is a professor at the University of Virginia. Wulf’s research has
included computer architecture, computer security, and hardware-software codesign. While
at Carnegie Mellon University, he designed the BLISS programming language and developed
a groundbreaking optimizing compiler for it. Wulf is a former president of the National
Academy of Engineering and has previously chaired the Computer Science and
Telecommunications Board of the National Research Council. He serves on the Council of
the Associattion of Computing Machinery, and is a reviewing editor of Science. In 1994 he
was inducted as a fellow of the ACM. In 1993, Wulf was elected to the National Academy of
Engineering for professional leadership and for contributions to programming systems and
computer architecture. He attended the University of Illinois, receiving a B.S. in engineering
physics and an M.S. in electrical engineering, and then achieved a Ph.D. in computer
science from the University of Virginia.

B.3 Staff

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

79

Herbert S. Lin, the study director , is chief scientist for the National Research Council’s
Computer Science and Telecommunications Board, where he has been a study director for
major projects on public policy and information technology. These studies include a 1996
study on national cryptography policy (Cryptography's Role in Securing the Information
Society), a 1991 study on the future of computer science (Computing the Future), a 1999
study of Defense Department systems for command, control, communications, computing,
and intelligence (Realizing the Potential of C4I: Fundamental Challenges), a 2000 study on
workforce issues in high-technology (Building a Workforce for the Information Economy), a
2002 study on protecting kids from Internet pornography and sexual exploitation (Youth,
Pornography, and the Internet), a 2004 study on aspects of the FBI's information
technology modernization program (A Review of the FBI's Trilogy IT Modernization
Program), a 2005 study on electronic voting (Asking the Right Questions About Electronic
Voting), a 2005 study on computational biology (Catalyzing Inquiry at the Interface of
Computing and Biology), a 2007 study on privacy and information technology (Engaging
Privacy and Information Technology in a Digital Age), a 2007 study on cybersecurity
research (Toward a Safer and More Secure Cyberspace), a 2009 study on health care
information technology (Computational Technology for Effective Health Care), and a 2009
study on cyberattack (Technology, Policy, Law, and Ethics Regarding U.S. Acquisition and
Use of Cyberattack Capabilities). Before his NRC service, he was a professional staff
member and staff scientist for the House Armed Services Committee (1986-1990), where
his portfolio included defense policy and arms control issues. He received his doctorate in
physics from MIT . Apart from his CSTB work, he is published in cognitive science, science
education, biophysics, and arms control and defense policy. He also consults on K-12 math
and science education.

Enita Williams is an associate program officer with the Computer Science and
Telecommunications Board of the National Research Council. She formerly served as a
research associate for the Air Force Studies Board of the National Academies where she
supported a number of projects including a standing committee for the Special Operations
Command (SOCOM) and standing committee for the intelligence community (TIGER). Prior
to her work at the National Academies, she served as a program assistant with the Scientific
Freedom, Responsibility and Law Program of AAAS, where she drafted the human
enhancement workshop report. Ms. Williams graduated from Stanford University with a B.A.
in public policy with a focus on science and technology policy, and an M.A. in
communications.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

81

Appendix C

Executive Summary from Being Fluent with Information Technology1

Information technology is playing an increasingly important role in the work and

personal lives of citizens. Computers, communications, digital information, software—the
constituents of the information age—are everywhere.

Between those who search aggressively for opportunities to learn more about
information technology and those who choose not to learn anything at all about information
technology, there are many who recognize the potential value of information technology for
their everyday lives and who realize that a better understanding of information technology
will be helpful to them. This realization is based on several factors:

• Information technology has entered our lives over a relatively brief period of time with

little warning and essentially no formal educational preparation for most people.
• Many who currently use information technology have only a limited understanding of the

tools they use and a (probably correct) belief that they are underutilizing them.
• Many citizens do not feel confident or in control when confronted by information

technology, and they would like to be more certain of themselves.
• There have been impressive claims for the potential benefits of information technology,

and many would like to realize those benefits.
• There is concern on the part of some citizens that changes implied by information

technology embody potential risks to social values, freedoms or economic interests, etc.,
obligating them to become informed.

And, naturally, there is simple curiosity about how this powerful and pervasive technology
works.

These various motivations to learn more about information technology raise the
general question, What should everyone know about information technology in order to use
it more effectively now and in the future? Addressing that question is the subject of this
report.

The answer to this question is complicated by the fact that information technology is
changing rapidly. The electronic computer is just over 50 years old, "PC," as in personal
computer , is less than 20 years old, and the World Wide Web has been known to the public
for less than five years. In the presence of rapid change, it is impossible to give a fixed,
once-and-for-all course that will remain current and effective.

Generally, "computer literacy" has acquired a "skills" connotation, implying
competency with a few of today’s computer applications, such as word processing and e-
mail. Literacy is too modest a goal in the presence of rapid change, because it lacks the
necessary "staying power ." As the technology changes by leaps and bounds, existing skills
become antiquated and there is no migration path to new skills. A better solution is for the
individual to plan to adapt to changes in the technology. This involves learning sufficient

1 NOTE: Reprinted from National Research Council, 1999, Being Fluent with Information

Technology, Washington, D.C.: National Academy Press, pp. 1-5.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

82

foundational material to enable one to acquire new skills independently after one's formal
education is complete.

This requirement of a deeper understanding than is implied by the rudimentary term
"computer literacy" motivated the committee to adopt "fluency" as a term connoting a
higher level of competency. People fluent with information technology (FIT persons) are
able to express themselves creatively, to reformulate knowledge, and to synthesize new
information. Fluency with information technology (i.e., what this report calls FITness)
entails a process of lifelong learning in which individuals continually apply what they know
to adapt to change and acquire more knowledge to be more effective at applying
information technology to their work and personal lives.

Fluency with information technology requires three kinds of knowledge:
contemporary skills, foundational concepts, and intellectual capabilities. These three kinds
of knowledge prepare a person in different ways for FITness.

• Contemporary skills, the ability to use today’s computer applications, enable people to

apply information technology immediately. In the present labor market, skills are an
essential component of job readiness. Most importantly, skills provide a store of
practical experience on which to build new competence.

• Foundational concepts, the basic principles and ideas of computers, networks, and
information, underpin the technology. Concepts explain the how and why of information
technology, and they give insight into its opportunities and limitations. Concepts are the
raw material for understanding new information technology as it evolves.

• Intellectual capabilities, the ability to apply information technology in complex and
sustained situations, encapsulate higher-level thinking in the context of information
technology. Capabilities empower people to manipulate the medium to their advantage
and to handle unintended and unexpected problems when they arise. The intellectual
capabilities foster more abstract thinking about information and its manipulation.

For specificity, the report enumerates the ten highest-priority items for each of the

three types of knowledge. (Box ES.1 lists these ten items for each type of knowledge.) The
skills, linked closely to today’s computer usage, will change over time, but the concepts and
capabilities are timeless.

Concepts, capabilities, and skills—the three different types of knowledge of
FITnessoccupy separate dimensions, implying that a particular activity involving
information technology will involve elements of each type of knowledge. Learning the skills
and concepts and developing the intellectual capabilities can be undertaken without
reference to each other , but such an effort will not promote FITness to any significant
degree. The three elements of FITness are co-equal, each reinforcing the others, and all
are essential to FITness.

FITness is personal in the sense that individuals fluent with information technology
evaluate, distinguish, learn, and use new information technology as appropriate to their own
personal and professional activities. What is appropriate for an individual depends on the
particular applications, activities, and opportunities for being FIT that are associated with
the individual’s area of interest or specialization.

FITness is also graduated and dynamic. It is graduated in the sense that FITness is
characterized by different levels of sophistication (rather than a single fluent/not fluent

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

83

judgment). And, it is dynamic in that FITness entails lifelong learning as information
technology evolves.

In short, FITness should not be regarded as an end state that is independent of
domain, but rather as something that develops over a lifetime in particular domains of
interest and that has a different character and tone depending on which domains are
involved. Accordingly, the pedagogic goal is to provide students with a sufficiently complete
foundation of the three types of knowledge that they can "learn the rest of it" on their own
as the need arises throughout life.

Because FITness is fundamentally integrative, calling upon an individual to
coordinate information and skills with respect to multiple dimensions of a problem and to
make overall judgments and decisions taking all such information into account, a project-
based approach to developing FITness is most appropriate. Projects of appropriate scale
and scope inherently involve multiple iterations, each of which provides an opportunity for
an instructional checkpoint or intervention. The domain of a project can be tailored to an
individual’s interest (e.g., in the department of a student’s major), thereby providing
motivation for a person to expend the (non-trivial) effort to master the concepts and skills
of FITness. In addition, a project of appropriate scope will be sufficiently complex that
intellectual integration is necessary to complete it. Note also that much of the infrastructure
of existing skills-based computer or information technology literacy efforts (e.g., hardware,
software, network connections, support staff) will be important elements of efforts to
promote FITness.

Although the essentials of FITness are for the most part not dependent on
sophisticated mathematics, and should therefore generally be accessible in some form to
every citizen, any program or effort to make individuals more FIT must be customized to the
target population. Because the committee was composed of college and university faculty,
the committee chose to focus its implementational concerns on the four-year college or
university graduate as one important starting point for the development of FITness across
the citizenry. Further , the committee believes that successful implementation of FITness
instruction will requires serious rethinking of the college and university curriculum. It will
not be sufficient for individual instructors to revisit their course content or approach.
Rather , entire departments must examine the question of the extent to which their students
will graduate FIT . Universities need to concern themselves with the FITness of students
who cross discipline boundaries and with the extent to which each discipline is meeting the
goals of universal FITness.

In summary, FIT individuals, those who know a starter set of IT skills, who
understand the basic concepts on which IT is founded, and who have engaged in the
higher-level thinking embodied in the intellectual capabilities, should use information
technology confidently, should come to work ready to learn new business systems quickly
and use them effectively, should be able to apply IT to personally relevant problems, and
should be able to adapt to the inevitable change as IT evolves over their lifetime. To be FIT
is to possess knowledge essential to using information technology now and in the future.

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

84

Box ES.1 The Components of Fluency with Information Technology

Intellectual Capabilities

1. Engage in sustained reasoning.
2. Manage complexity.
3. Test a solution.
4. Manage problems in faulty solutions.
5. Organize and navigate information structures and evaluate information.
6. Collaborate.
7. Communicate to other audiences.
8. Expect the unexpected.
9. Anticipate changing technologies.
10. Think about information technology abstractly.

Information Technology Concepts

1. Computers
2. Information systems
3. Networks
4. Digital representation of information
5. Information organization
6. Modeling and abstraction
7. Algorithmic thinking and programming
8. Universality
9. Limitations of information technology
10. Societal impact of information and information technology

Information Technology Skills

1. Setting up a personal computer
2. Using basic operating system features
3. Using a word processor to create a text document
4. Using a graphics and/or an artwork package to create illustrations, slides, or other image-
based expressions of ideas
5. Connecting a computer to a network
6. Using the Internet to find information and resources
7. Using a computer to communicate with others
8. Using a spreadsheet to model simple processes or financial tables
9. Using a database system to set up and access useful information
10. Using instructional materials to learn how to use new applications or features

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

85

Appendix D

Supplemental Bibliography

Barron, Brigid. 2006. “Interest and Self-Sustained Learning as Catalysts of Development: A

Learning Ecology Perspective.” Human Development 49:193-224.
Bell, Philip. 2005. “Reflections on the Cognitive and Social Foundations of Information and

Communication Technology Fluency.” Paper read at Workshop on ICT Fluency and
High School Graduation Outcomes, October 23-24, 2005, Washington, D.C.

Bell, Tim, Ian H. Witten, and Mike Fellows. 2006. Computer Science Unplugged: An
Enrichment and Extension Programme for Primary Aged-Children. Canterbury, New
Zealand: Computer Science Unplugged.

Blikstein, Paulo and Uri Wilensky. 2007. “Bifocal modeling: A Framework for Combining
Computer Modeling, Robotics and Real-World Sensing.” Paper presented at the
annual meeting of the American Educational Research Association (AERA 2007), April
9-13, 2007, Chicago, IL.

Blum, Lenore, and Thomas J. Cortina. 2007. “CS4HS: An Outreach Program for High School
CS Teachers.” Paper read at ACM Special Interest Group on Computer Science
Education, March 7-10, 2007, Covington, Kentucky.

Blum, Lenore, and Richard J. Lipton. 2009. “Algorithms: Tiny Yet Powerful – and We Can’t
Live Without Them.” Available online at
http://rjlipton.wordpress.com/2009/02/13/algorithms-tiny-yet-powerful/

Carnegie Mellon University, Center for Computational Thinking.
http://www.cs.cmu.edu/~CompThink/

Cortina, Thomas J. 2007. “An Introduction to Computer Science for Non-majors Using
Principles of Computation.” Paper read at ACM Special Interest Group on Computer
Science Education March 7-10, 2007, Covington, Kentucky.

Denning, Peter . 2004. “Great Principles in Computing Curricula.” Paper read at ACM Special
Interest Group on Computer Science Education, March 3-7, 2004, Norfolk, Virginia.

Denning, Peter . 2009. “Beyond Computational Thinking: A CACM IT Profession Column.”
Communications of the ACM 52(6):28-30.

diSessa, Andrea. 2008.“Can Students Re-Invent Fundamental Scientific Principles?:
Evaluating the Promise of New-Media Literacies.” In Children’s Learning in a Digital
World, edited by T . Willoughby and E. Wood. Oxford, United Kingdom: Blackwell
Publishing.

diSessa, Andrea. 2005. “Systemics of Learning for a Revised Pedagogical Agenda.” In
Foundations for the Future in Mathematics Education, edited by R. Lesh. Mahwah,
New Jersey: Lawrence Erlbaum Associates.

Glass, Robert L. 2006. “Call It Problem Solving, Not Computational Thinking.”
Communications of the ACM 49 (9):13.

Goldman, Shelley, Roy Pea, Heidy Maldonado, Lee Martin, Toby White, and WILD Team of
Stanford University. 2004. “Functioning in the Wireless Classroom.” Paper read at
2nd IEEE International Workshop on Wireless and Mobile Technologies in Education

http://rjlipton.wordpress.com/2009/02/13/algorithms-tiny-yet-powerful/
http://www.cs.cmu.edu/~CompThink/

Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking
http://www.nap.edu/catalog/12840.html

Pre-publication copy – subject to further editorial correction

86

(WMTE'04), March 23-25, 2004, Washington, D.C.
Goldman, Shelley, Roy Pea, Heidy Maldonado, and WILD Team of Stanford University. 2004

“Emerging Social Engineering in the Wireless Classroom.” Paper read at International
Conference on Learning Sciences, Proceedings of the 6th International Conference
on Learning Sciences, June 22-26, 2004, Santa Monica, CA.

Hazzan, Orit, Judith Gal-Ezer, and Lenore Blum. 2008. “A Model for High School Computer
Science Education: The Four Key Elements that Make It!” Paper read at SIGCSE
2008, March 12-15, Portland, Oregon

Kay, Alan. 2005. “Squeak Etoys, Children & Learning.” In Viewpoints Research Institute,
VPRI Research Note RN-2005-001. Available online at
http://www.vpri.org/pdf/rn2005001_learning.pdf.

Levy, Sharona T ., and David Mioduser . 2008. “Does It ‘Want’ or ‘Was it programmed to’?
Kindergarten Children’s Explanations of an Autonomous Robot’s Adaptive
Functioning.” International Journal of Technology and Design Education 18:337-359.

Moursund, Dave. 2006. Computational Thinking and Math Maturity: Improving Math
Education in K-8 Schools. Eugene, Oregon: University of Oregon Press.

National Research Council. 1999. Being Fluent with Information Technology. Washington,
D.C.: National Academy Press.

National Research Council. 2004. “The Essential Character of Computer Science.” In
Computer Science: Reflections on the Field, Reflections from the Field. Washington,
D.C.: The National Academies Press.

National Research Council. 2004. “The Legacy of Computer Science.” In Computer Science:
Reflections on the Field, Reflections from the Field. Washington, D.C.: The National
Academies Press.

National Research Council. 2005. “ICT Fluency and High Schools: A Workshop Summary.”
Paper read at Workshop on ICT Fluency and High School Graduation Outcomes,
October 23 - 24, 2005, Washington, D.C.

Phillps, Pat. PRESENTATION: “Computational Thinking: A Problem-Solving Tool for Every
Classroom.” Microsoft.

Resnick, Mitchel, John Maloney, Andrés Monroy Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner , Eric Rosenbaum, Jay Silver , Brian Silverman, and
Yasmin Kafai. 2009. “Scratch: Programming for All. ” Communications of the ACM
52(11):60-67

SECANT: Science Education in Computational Thinking, Purdue University,
http://secant.cs.purdue.edu/.

Stonedahl, Forrest, Michelle Wilkerson-Jerde, and Uri Wilensky. 2009. “Re-conceiving
Introductory Computer Science Curricula Through Agent-Based Modeling.”
Proceedings of the EduMAS Workshop at AAMAS 2009. Evanston, Illinois: Center for
Connected Learning and Computer-Based Modeling, Northwestern University.

Sysło, Maciej M., and Anna Beata Kwiatkowska. 2008. “The Challenging Face of Informatics
Education in Poland.” Paper read at Informatics Education—Supporting
Computational Thinking: Third International Conference on Informatics in Secondary
Schools—Evolution and Perspectives, July, Torun, Poland.

Wing, Jeannette M. 2008. “Computational Thinking and Thinking About Computing.”
Philosophical Transactions of the Royal Society A 366:3717-3725.

Wing, Jeannette M. 2008. “Five Deep Questions in Computing.” Communications of the
ACM 51 (1):58-60.

http://www.vpri.org/pdf/rn2005001_learning.pdf
http://secant.cs.purdue.edu/

	Front Matter
	1. Introduction
	2. What Is Computational Thinking?
	3. Looking Outward
	4. Relationship to Past and Ongoing Efforts
	5. Open Questions
	6. Next Steps
	Appendix A Workshop Agenda
	Appendix B Short Biographies of Committee Members,Workshop Participants, and Staff
	Appendix C Executive Summary from Being Fluent with Information Technology
	Appendix D Supplemental Bibliography

