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Preface 

 
 
As the use of computational devices has become widespread, there is a need to 

understand the scope and impact of what is sometimes called the Information Revolution or 
the Age of Digital Information.  This is particularly apparent in education at all levels. 
Various efforts have been made to introduce K-12 students to the most basic and essential 
computational concepts, and college curricula have tried to provide students a basis for life-
long learning of increasingly new and advanced computational concepts and technologies.  
At both ends of this spectrum, however , most efforts have not focused on fundamental 
concepts. 

One common approach to incorporating computation into the K-12 curriculum is to 
emphasize computer literacy, which generally involves using tools to create newsletters, 
documents, Web pages, multimedia presentations, or budgets.  A second common approach 
is to emphasize computer programming by teaching students to program in particular 
programming languages such as Java or C++.  A third common approach focuses on 
programming applications such as games, robots, and simulations.  

But in the view of many computer scientists, these three major approaches—
although useful and arguably important—should not be confused with learning to think 
computationally.  In this view, computational thinking is a fundamental analytical skill that 
everyone, not just computer scientists, can use to help solve problems, design systems, and 
understand human behavior .  As such, they believe that computational thinking is 
comparable to the mathematical, linguistic, and logical reasoning that is taught to all 
children.  This view mirrors the growing recognition that computational thinking (and not 
just computation) has begun to influence and shape thinking in many disciplines—Earth 
sciences, biology, and statistics, for example.  Moreover , computational thinking is likely to 
benefit not only other scientists but also everyone else—bankers, stockbrokers, lawyers, car 
mechanics, sales people, health care professionals, artists, and so on.   

To explore these notions in greater depth, the Computer and Information Science 
and Engineering Directorate of the National Science Foundation asked the National Research 
Council to conduct two workshops to explore the nature of computational thinking and its 
cognitive and educational implications. This report summarizes the first workshop, which 
focused on the scope and nature of computational thinking and on articulating what 
"computational thinking for everyone" might mean.  A second workshop, to be held 
sometime later , will focus on the cognitive and educational dimensions of computational 
thinking. 

Although this document was prepared by the Committee for the Workshops on 
Computational Thinking based on workshop presentations and discussions, it does not 
reflect consensus views of the committee.  Under NRC guidelines for conducting workshops 
and developing report summaries, workshop activities do not seek consensus and workshop 
summaries (such as the present volume) cannot be said to represent “an NRC view” on the 
subject at hand.  This workshop report reveals the plethora of perspectives on 
computational thinking, raises issues for the follow-on workshop concerned with pedagogy, 
and suggests the need for the field to build consensus on the scope, nature, and structure 
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of computational thinking.  The present report contains a digest of both presentations and 
discussion.   

The meeting agenda and workshop participants are described in Appendix A and 
Appendix B, respectively.  Appendix C reprints the executive summary of the National 
Research Council’s Being Fluent with Information Technology report (National Academy 
Press, Washington DC, 1999).  Appendix D provides an extended bibliography for additional 
references not contained in footnotes. 

 
        

Marcia Linn, Chair 
   Committee for the Workshops on Computational Thinking 
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1.  Introduction 
 
 

1.1 SCOPE AND APPROACH OF THIS REPORT 
 
This report summarizes a workshop on the nature of computational thinking held 

February 19-20, 2009, in Washington, D.C., under the auspices of the National Research 
Council’s (NRC’s) Committee for the Workshops on Computational Thinking.  The workshop 
was structured to gather inputs and insights from computer scientists, information 
technologists, and disciplinary experts knowledgeable about how computational thinking 
might be relevant to their domains of expertise.  It also involved a number of education 
researchers and cognitive scientists familiar with educational dimensions of computational 
thinking.   

Questions posed to workshop participants included the following: What are the 
scope and the nature of computational thinking?  How does it differ from other ways of 
thinking, such as mathematical thinking, quantitative reasoning, scientific thinking, and 
fluency with information technology?  What kinds of problems require computational 
thinking?  What are some examples?  How, if at all, does computational thinking vary by 
discipline?  What is the value of computational thinking for nonscientists?  How, if at all, 
would widespread facility with computational thinking enhance the productivity of American 
workers?  What affordances are provided by new technologies for computational thinking?1  
What is the role of information technology in imparting computational thinking skills?  What 
parts of computational thinking can be taught without the use of computers? Without the 
skills of computer programming?  

Although the original workshop agenda was structured around panels devoted to 
exploring a subset of the questions above, the discussion throughout the workshop resulted 
in useful insights regarding all of these questions.  Accordingly, the committee organized its 
summary so that thoughts and insights on similar questions would be presented together , 
rather than being scattered throughout a summary organized in accordance with the 
original panel structure. 

Each succeeding chapter describes some of the main themes arising from a 
workshop session.  The themes are not conclusions or findings of the committee; they are 
ideas, extracted from the discussions during each session and drawn not only from the 
presentations of the speakers but also from the discussions among all the participants 
(committee, speakers, and attendees), that seem to have formed the gist of the session.  In 
addition, to improve readability and to promote understanding, background material on 
some of the topics raised has been interspersed in this summary. 

This report does not include all of the material that was discussed in the committee’s 
first workshop.  Specifically, in addition to discussions related to the nature of computational 

                                            
1 Loosely speaking, an affordance is the quality of an artifact that enables someone 

to take or to perform an action.  Affordances are discussed in somewhat greater detail in 
Section 2.5. 
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thinking, there were many discussions related to pedagogy and how best to expose 
students to the ideas of computational thinking.  Because the second workshop will be 
devoted to that topic, the committee felt that it was better to communicate most of the first 
workshop’s pedagogical discussions in the second workshop’s report.  That said, this report 
(of the first workshop) does foreshadow some of the themes and ideas that will be reflected 
in the second report.  For example, the second workshop will explore possible connections 
between the structure and the pedagogy of computational thinking, as well as the extent to 
which it is reasonable to expect individuals to generalize computational thinking abilities 
from one problem domain to another . 

In addition, the reader is cautioned that the workshop was not structured to result in 
a consensus regarding the scope and nature of computational thinking, and the workshop 
was deliberately organized to include individuals with a broad range of perspectives.  For 
this reason and because some of the discussion amounted to brainstorming, this summary 
may contain internal inconsistencies that reflect the wide range of views offered by 
workshop participants.  In keeping with its purpose of exploring the topic, this workshop 
summary does not contain findings or recommendations. 

 
 

1.2 MOTIVATION—WHY SHOULD ANYONE CARE ABOUT COMPUTATIONAL 
THINKING? 

 
As it is usually construed, computational thinking includes a broad range of mental 

tools and concepts from computer science that help people solve problems, design systems, 
understand human behavior , and engage computers to assist in automating a wide range of 
intellectual processes.  The elements of computational thinking are reasonably well known, 
given that they include the computational concepts, principles, methods, languages, models, 
and tools that are often found in the study of computer science.  Thus, computational 
thinking might include reformulation of difficult problems by reduction and transformation; 
approximate solutions; parallel processing; type checking and model checking as 
generalizations of dimensional analysis; problem abstraction and decomposition; problem 
representation; modularization; error prevention, testing, debugging, recovery, and 
correction; damage containment; simulation; heuristic reasoning; planning, learning, and 
scheduling in the presence of uncertainty; search strategies; analysis of the computational 
complexity of algorithms and processes; and balancing computational costs against other 
design criteria.  Concepts from Computer Science such as algorithm, process, state 
machine, task specification, formal correctness of solutions, machine learning, recursion, 
pipelining, and optimization also find broad applicability.  

Computer science, of course, has no monopoly on such concepts.  For example, 
physicists have used abstraction and modeling for centuries, logisticians and management 
scientists have studied scheduling extensively, and notions of tradeoff are central to the 
work of economists and engineers.  Nevertheless, computer science provides a basis for a 
unified framework and language with which to discuss such notions explicitly, and these 
notions are the fundamental concepts of this discipline broadly construed (e.g., including 
information science, elements of computational science and engineering, digital media 
studies, and so on). 

By explicitly articulating these notions, many computer scientists, and certainly the 
workshop attendees, believe that it is possible to describe a collection of analytic skills that 



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking 
http://www.nap.edu/catalog/12840.html

3 

everyone, not just computer scientists, can use to help solve problems, design systems, and 
understand human behavior .  Thus, they argue, computational thinking is comparable in 
importance and significance to the mathematical, linguistic, and logical reasoning that 
society today agrees should be taught to all children.   

Expanding on these ideas, workshop participants offered a number of reasons for 
promulgating computational thinking skills more broadly: 

 
• Succeeding in a technological society.  In this view, computational thinking affords 

individuals the ability to navigate more effectively through a society in which they 
frequently encounter technological devices in their personal lives (cell phones, 
automobiles, dishwashers, and so on).  In addition, individuals have the opportunity 
to take advantage of technological resources (e.g., information on the Internet, 
social networking, online education, cloud computing).  Finally, individuals 
competent in computational thinking are better able to understand the ways in 
which technology is relevant to public policy decisions. Workshop participants 
including Marcia Linn argued that emphasis on computational thinking in K-12 
education would increase equitable access to the resources of modern society. 

• Increasing interest in the information technology professions .  It is a matter of 
record that enrollments in computer science university programs have dropped since 
the peak of the dot-com years, though in recent years, these enrollments have 
begun to rise again.2  A number of workshop participants, among them Lenore Blum, 
argued that a broader promulgation of computational thinking in K-12 students 
would help to sustain the rising interest in computing as a profession. 

• Maintaining and enhancing U.S. economic competitiveness.  Some workshop 
participants pointed to reports that noted concerns about offshoring of U.S. jobs and 
the U.S. ability to remain economically competitive in a global environment.3  In this 
view, a better educated workforce is an essential element of an internationally 
competitive workforce, and a number of workshop participants expressed the view 
that computational thinking is an essential component of such an education.   

• Supporting inquiry in other disciplines.  Given the increasingly prominent role that 
computational tools are having in other disciplines, several participants, including 
Edward Fox and Bill Wulf, argued that a facility with computational thinking would 
assist specialists in those other disciplines to more effectively adopt, use, and 
develop computational tools.  Robert Constable pointed to some of the examples in 
Box 1.1.  [Boxes and figures for each chapter are located at the end of the chapter 
in this prepublication document.  The final document will present boxes and figures 
close to their call-outs in the text.] 

                                            
2 Steve Kolowich, 2009, “Computer-Science Enrollment Rises for the First Time in Six 

Years,” The Chronicle of Higher Education, March 17, 2009. Available at 
http://chronicle.com/blogPost/Computer-Science-Enrollment/4579. Accessed December 28, 
2009. 

3 See for example, National Research Council, 2007, Rising Above the Gathering 
Storm: Energizing and Employing America for a Brighter Economic Future, Washington, DC: 
The National Academies Press.  Available at 
http://www.nap.edu/catalog.php?record_id=11463. Accessed December 28, 2009. 

http://chronicle.com/blogPost/Computer-Science-Enrollment/4579
http://www.nap.edu/catalog.php?record_id=11463
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• Enabling personal empowerment.  Many workshop participants suggested that a 
strong motivator for an individual to learn computational thinking is to gain the 
ability to do things that are important to him or her . For example, Roy Pea noted 
that in general people want “to do something without error , do those things 
efficiently, and do them cost-effectively.”  Furthermore, people “constantly have 
meta-discourse around routines and processes that help them achieve these goals.”  
Computational thinking, Pea noted, provides people with “a way to abstract what 
they’re already doing and talking about....Connecting computational thinking in a 
personally meaningful way is at the heart of tackling the problem of how everyone 
can be brought into a pathway for developing and using computational thinking in 
their everyday lives.” 
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Box 1.1 Computation and Computational Thinking for Creating Knowledge  

 
1. The 1976 proof of the Four-Color Conjecture was based on an exhaustive search to 

evaluate an enormous number of possible cases.  In 2004, the Coq theorem checker 
was used to confirm a variant of the original 1976 proof. 

2. Computers led to the discovery that the gene regulating the size of tomatoes is 
similar to genes involved in cancer in mammals.4  

3. Five new pulsars were discovered by mining 12 terabytes of data gathered from the 
Arecibo observatory in Puerto Rico. 

4. Biologists such as Jane Hillston have used probabilistic process algebras to model the 
interaction of proteins within and between cells.   

5. Researchers at the Joseph Bell Centre in the United Kingdom have built a system 
that constructs a space of hypotheses to explain the evidence in a crime scene.  
Such a system has been used to remind detectives of hypotheses they might 
otherwise have missed.  

6. Predictions about climate change and global warming are enabled only through the 
use of computational models of planetary climate and weather .  An example of an 
unexpected connection discovered using such models (and enormous amounts of 
data from automated sensors) is the influence of the surface temperature of the 
Indian Ocean on long-term weather patterns over the North Atlantic.  

7. The Forma Urbis Romae5 has used computers to help create new primary data from 
shards of the great stone map of Rome circa 210 AD by representing the shards so 
that they could be treated as geometric puzzle pieces that computers could attempt 
to assemble.  

8. Computational thinking has helped to transform the earth sciences.  Without 
computing, geological narratives have tended to be direct, uncoupled, and linear 
(because such systems are easier to analyze), but such narratives underestimate the 
complexity of the interactions between different geological processes.  Computer 
modeling enables earth scientists to represent previously intractable relationships 
and thus helps them to develop a deeper understanding.  

9. Psychologists working on the problem of how humans recognize faces have made 
good use of computer-based image morphing techniques.  While early experiments 
with photos, scissors, and paste were too crude to provide the fine gradations 
between images needed to separate rival psychological hypotheses, Vicky Bruce and 
collaborators were able to show that faces are encoded in memory by abstracting 
them into a small collection of archetypes.  Face recognition then consists of a 
human matching the current image to the most similar archetype. Bruce's theory of 
face recognition is also formulated as a computational process, employing 

                                            
4 Anne Frary, Clint Nesbitt, Amy Frary, Silvana Grandillo, Esther van der Knaap, Bin 

Cong, Jiping Liu, Jaroslaw Meller , Ron Elber , Kevin B. Alpert, and Steven D. Tanksley, 2000, 
“T Cloning, Transgenic Expression and Function of fw2.2: A Quantitative Trait Locus Key to 
the Evolution of Tomato Fruit,” Science 289(5476):85-88. 

5 Marc Levoy, 2000, “Digitizing the Forma Urbis Romae,” presented at Siggraph 
Digital Campfire on Computers and Archeology, Snowbird, Utah, April 14. 
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techniques for abstraction, representing and formulating archetypes, “nearest 
neighbor” matching, and so on. 

 
SOURCE: Items 1-3, 6, and 7 are adapted from Robert L. Constable, “Transforming the 
Academy: Knowledge Formation in the Age of Digital Information,” PhysicaPlus, Issue 9, 
http://physicaplus.org.il/zope/home/en/1185176174/trans_academy_en.  Items 4, 5, 8, and 
9 are adapted from Alan Bundy, “Computational Thinking Is Pervasive,” available at 
http://www.inf.ed.ac.uk/research/programmes/comp-think/. 
 

 

http://physicaplus.org.il/zope/home/en/1185176174/trans_academy_en
http://www.inf.ed.ac.uk/research/programmes/comp-think/
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2. What Is Computational Thinking? 
 
Most of the workshop’s discussions focused on exploring different aspects of what 

participants thought about computational thinking.  The presentation of topics in this 
chapter is not chronological—throughout the workshop discussions, participants returned to 
topics and ideas mentioned earlier .  Thus, the presentation below seeks to organize the 
discussions by theme rather than by order of presentation.  Section 2.1 outlines an overview 
of some of the intuitive notions of computational thinking held by different workshop 
participants.  Section 2.2 discusses computational thinking as a range of concepts, 
applications, tools, and skill sets.  Section 2.3 looks at computational thinking linguistically 
(i.e., as a language) and explores the role and importance of programming as an essential 
aspect of computational thinking as a primary and critical mode of precise expression.  
Section 2.4 examines computational thinking from the perspective of automating 
computational abstractions.  Section 2.5 looks at computational thinking as a cognitive tool 
set for certain kinds of intellectual endeavor.  Section 2.6 explores computational thinking in 
contexts that do not explicitly require the use of information technology as traditionally 
understood. A related section (Section 2.7) explores the question of how and to what extent 
computers per se relate to computational thinking.  Section 2.8 examines the collaborative 
dimensions of computational thinking.  Section 2.9 presents views on what computational 
thinking is not.   

 
 

2.1 THE LANDSCAPE OF COMPUTATIONAL THINKING 
 
In a 2006 article, Jeannette Wing, then a professor of computer science at Carnegie 

Mellon University, discussed computational thinking as “a way of solving problems, 
designing systems, and understanding human behavior that draws on concepts fundamental 
to computer science.”6  Since then, Wing has assumed the position of assistant director of 
the National Science Foundation Computer and Information Science and Engineering 
directorate.  From that podium, she has promoted the idea that as computation, 
communications, and information become increasingly prominent throughout daily life, 
computational thinking becomes more useful to the economic, intellectual, and social well-
being of everyone (Box 2.1).  [Boxes and figures for each chapter are located at the end of 
the chapter in this prepublication document.  The final document will present boxes and 
figures close to their call-outs in the text.] 

Wing’s presentation at the workshop made prominent mention of the “shotgun” 
approach to sequencing the human genome as a powerful example of how computational 
thinking might be useful outside the traditional domain of computer science.  The human 
DNA sequence consists of 3.4 billion base pairs, and the determination of this sequence was 
completed in 2003, in a significantly shorter time than originally estimated, through the use 
of the shotgun approach.  In general, the sequencing of a long DNA string can be 

                                            
6 Jeannette M. Wing, 2006, Computational Thinking, Communications of the ACM, 49 

(3):33-35. 
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accomplished only by dividing the sequence into a number of short fragments, each of 
which is sequenced and then assembled into the appropriate order . 

In the shotgun approach, a long DNA sequence is randomly divided into many short 
fragments, each of which can be sequenced.  To reassemble the fragments, investigators 
use overlaps between the ends of the fragments—fragments whose ends do not match 
cannot be connected to each other .  However , the presence of a match between fragment 
ends does not guarantee that the two fragments in question should necessarily be joined, 
and additional data are needed to resolve these ambiguities.  To obtain the additional data, 
the fragmentation process is repeated—since the division is random, it is likely that the spot 
where two fragments were separated in the first fragmentation will in fact be contiguous in 
the second fragmentation. This fact can be used to confirm or reject the match proposed 
from the first round.  Through a series of successive rounds of fragmentation and analysis, 
the correct sequence can be determined.  The algorithm used to analyze the data resulting 
from this iterative process is widely known as a shotgun algorithm. 

This example manifests several aspects of computational thinking.  Algorithm 
embodies the notion of a precisely formulated unambiguous procedure that is repetitively 
applied.  Search, pattern matching, and iterative refinement can also be seen in the 
example, and the powerful idea of randomization as an asset in repeated fragmentation is a 
particularly important aspect of computational thinking. 

Drawing on their own intuitive notions of computational thinking, workshop 
participants offered a number of additional examples of computational thinking in context.  
For instance, when a device (computer , cell phone, or printer) malfunctions, a reboot is 
often used to restore it to working condition.  A person thinking computationally realizes 
that by turning it off and restarting it, she can reset the internal state of the device to a 
known and fresh state and allow the device’s internal processes to execute from that known 
state.  Second, information technology can help to process very large volumes of 
information.  A person thinking computationally realizes that data-intensive problems such 
as sequencing DNA may be amenable to solutions based on algorithms and automation. 
Third, information technology can often be used to help manage complexity in 
understanding complicated problems.  A person thinking computationally realizes that 
computational modeling can help address and understand complex problems across varied 
disciplines such as climate change, economic policy, and educational decision making.  

Responding to the workshop focus on explicating the scope and nature of 
computational thinking (with the implied goal of being more effective in imparting to 
students the essentials of computational thinking), Uri Wilensky offered a caution—that “it is 
not necessarily the case that the best way to enter into something is to enter it in the way 
that an expert already understands it. ”  For those in attendance at the workshop, he noted 
that “if one is already an expert in computer science, it’s easy to forget what it’s like to 
enter into the field.”  He did not argue that the explication effort was wasted or 
inappropriate, only that as a community “we should be careful about the process of bringing 
a lot of people, in a widespread way, into computational thinking.  We should do more than 
present to students expert ways of thinking computationally—attention must be paid to the 
developmental understanding of students.”  Roy Pea made a similar point when he 
cautioned workshop participants against focusing on the prototypes for computational 
thinking provided by experts in the field, because such prototypes “may lead us away from 
the professed goal of everyday computational thinking.”   
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2.2 COMPUTATIONAL THINKING AS A RANGE OF CONCEPTS, 
APPLICATIONS, TOOLS, AND SKILL SETS  

 
Over the course of the workshop discussion, several participants described 

computational thinking as a collection of mental tools and concepts from computer science 
that help people to solve problems, design systems, and understand human behavior . For 
example, Wing drew the distinction between “metal tools” and “mental” tools, the former 
being the hardware/software applications that help solve problems and the latter being 
cognitive and intellectual skills that human beings can use to understand and solve 
problems more effectively.  They argued that these concepts feature prominently in 
computer science but are not exclusive to the field. 

Computational thinking was defined in a number of ways. These definitions fell into 
several categories and are described (in no particular order) below:   

 
• David Moursund along with several other workshop participants suggested that 

computational thinking was closely related to, if not the same as, the original notions 
of procedural thinking developed by Seymour Papert in Mindstorms.7  Procedural 
thinking includes developing, representing, testing, and debugging procedures, and an 
effective procedure is a detailed step-by-step set of instructions that can be 
mechanically interpreted and carried out by a specified agent, such as a computer or 
automated equipment.  

• Peter Lee offered a definition of computational thinking as the study of the 
mechanisms of intelligence that can yield practical applications by magnifying human 
intelligence.  Such a definition includes but is not equivalent to artificial intelligence, 
which in his view generally consists of efforts to mimic human mental processes.  
Rather , Lee argued, computational thinking is fundamentally about expanding human 
mental capabilities through abstract tools that help manage complexity and allow for 
automation of tasks.  Andrew McGettrick supported this view, but went further in 
saying that computational “thinking” had to involve actual capability and competency 
with technological artifacts in addition to thought processes.  Such an extended view, 
he noted, would require computational thinkers to constantly immerse themselves and 
invest in staying technologically current.  

• Bill Wulf suggested that computational thinking was primarily about process.  He 
noted that other areas of science focus on physical objects, whereas computational 
thinking focuses on processes and abstract phenomena that enable processes.  Wulf 
objected to the connotations of “computational” as focusing on numbers.  Speaking 
via videoconference, Peter Denning expressed a parallel sentiment, arguing that 
computer science itself is the study of information processes and that computational 
thinking is a subset of computer science. 

• Dor Abrahamson saw computational thinking as the use of computation-related 
symbol systems (semiotic systems) to articulate explicit knowledge and to objectify 
tacit knowledge, to manifest such knowledge in concrete computational forms, and to 
manage the products emerging from such intellectual efforts.  He further argued that 

                                            
7 Seymour Papert, 1981, Mindstorms: Children, Computers, And Powerful Ideas, New 

York: Basic Books. 
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a semiotic approach had embedded within it a philosophy of the relationship between 
understanding and personal meaning and helps guide the construction of personal 
meaning for these symbols.  

• Gerald Sussman defined computational thinking as a way of formulating precise 
methods of doing things.  Computational thinking is about rigorous analysis and 
procedures for accomplishing a defined task efficiently.  Sussman pointed to the 
importance of having precise language for methods and concepts—for this reason, 
Sussman argues that computational thinking has an “underlying linguistic structure.”  
For example, situations like "A happens before B" or "do this and then do that" are 
captured by the general idea of a partial order , and there are techniques for 
navigating partial orders and reasoning about them.   

• Wing and Sussman suggested that computational thinking could be seen as a bridge 
between science and engineering—a meta-science about studying ways or methods of 
thinking that are applicable across the different disciplines.  In this view, 
computational thinking is the central element of the reasoning that takes places in 
transitioning from the study of physical phenomena and the application of scientific 
observation.   

• Edward Fox emphasized the notion of handling and manipulating intangible 
abstractions for problem-solving purposes at the core of computational thinking.  Fox 
defined computational thinking as “what humans do as they approach the world [that 
is, their framing, paradigm, philosophy, or language] considering processes 
manipulating digital representations (and (meta) models),” and hence all humans 
engage in computational thinking to some extent already in their daily lives.  Brian 
Blake argued that computational thinking had to include representations, 
visualizations, modeling, or meta-modeling.  Uri Wilensky pointed out the historical 
power of representational shifts and argued that, like other such shifts, computational 
representations would enable greater modeling power and wider access to scientific 
models.  Janet Kolodner noted that computational thinking plays a role in the 
manipulation of software in support of problem solving. Kolodner stated that “[a piece 
of software can be] a tool that is being provided so that somebody can do 
computational thinking and can do thinking in some domain, but there’s [also] some 
kind of computational thinking they need to be able to do in order to manipulate that 
tool to be able to use it for their domain.”   

• Robert Constable would eschew static definitions of computational thinking—rather 
than a finite set of skills and thought processes, computational thinking is an open-
ended and growing a list of concepts that reflects the dynamic nature of technology 
and human learning, that combines elements of all the descriptions of computational 
thinking listed outlined above such as “automating intellectual processes” and 
“studying information processes,” among others. What makes computational thinking 
especially relevant is that computers can execute our “computational thoughts” and 
that “computers have become partners and collaborators” in discovery.  He further 
noted that the list of elements in the first paragraph of Section 1.2 is not merely a list 
of examples of computational thinking.  Rather , it is a partial list of important 
intellectual concepts and elements that are part of the science of computing and of 
digital information.   
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Computational thinking is careful reasoning about the methods of doing things. It’s clearly 
related to, but not identical with, mathematical thinking. Both [computational thinking and 
mathematical thinking deeply] are involved with abstraction, and reasoning with simplified 
models.   

—Gerald J. Sussman 
 

2.3 COMPUTATIONAL THINKING AS LANGUAGE AND THE IMPORTANCE OF 
PROGRAMMING 

 
A number of workshop participants advanced the idea that computational thinking 

could be better understood as a fundamental intellectual skill comparable to reading, 
writing, speaking, and arithmetic.  Functionally, these fundamental skills are all means of 
describing and explaining complex problems and situations to others, and computational 
thinking serves the same purpose.  In other words, computational thinking is comparable to 
other basic cognitive abilities that the average person in modern society is expected to 
possess. 

One participant quoted Niels Bohr, who said, “Science is not to tell us about the 
universe, but to tell us how to talk about the universe.”  Along these lines, computational 
thinking is another language (in addition to written and spoken language, science, and 
mathematics) that humans can use to talk about the universe and the complex processes 
within it.   

Roy Pea argued that “as soon as we think about the origins of computational 
thinking and computational literacies, programming has been at the heartland of the 
definition and the abstractions that are created as step-by-step algorithmic procedures.”   
Ursula Wolz supported the view that computational thinking is as essential a skill as reading, 
writing, and other basic language arts skills, pointing out that “programming is a language 
for expressing ideas.  You have to learn how to read and write that language in order to be 
able to think in that language.”  Mitchel Resnick concurred, arguing that “computational 
thinking is more than programming, but only in the same way that language literacy is more 
than writing.  They are both very important.  Yes, it’s more, but don’t minimize 
programming just because it’s more.”  He went on to say that programming is a particularly 
important form of expression, and that “programming, like writing, is a means of expression 
and an entry point for developing new ways of thinking.”  Eric Roberts also supported the 
idea that programming is essential to computational thinking and pointed out “a misguided 
assumption—that just because programming can be badly taught or that it can be difficult 
and deter people, it needs to be avoided entirely.”  (Box 2.2 describes the thoughts 
expressed in the 1999 report Being Fluent with Information Technology on the closely 
related question of the role of programming in imparting FITness.)  [Boxes and figures for 
each chapter are located at the end of the chapter in this prepublication document.  The 
final document will present boxes and figures close to their call-outs in the text.] 

Andy diSessa emphasized the notion of literacy as a social construction and noted 
that an effort to teach computational thinking (or rather , computational literacy, in diSessa’s 
terms) to everyone is, in large part, a social problem.  Moreover , it is the milieu of today’s 
society that encourages and/or demands that citizens have this literacy.  Owen Astrachan 
argued that “computational literacy will allow civilization to think and do things that will be 
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new to us in the way that the modern literate society would be almost incomprehensible to 
preliterate cultures, but it’s a different kind of literacy than what it means to be familiar .  By 
computational literacy, I do not mean a casual familiarity with a machine that computes.” 

Gerald Sussman built the “computational thinking-as-basic-language” metaphor by 
citing the process of composing poetry as an exercise in computational thinking. A poet’s 
task or problem is to produce a mechanism that induces an emotion in the reader of the 
poem. “The skillful poet takes pieces that have parts of that emotional state, puts them 
together in the right way—there are going to be bugs and there are going to have to be 
places where you make interfaces and all that sort of stuff— so as to make a larger 
structure that has that property.” Sussman went on to cite an essay by Edgar Allen Poe that 
described the process of composing poetry as an algorithm.  

Alan Kay was less enthusiastic about the “computational thinking-as-language” 
metaphor .  Although acknowledging the utility of computational thinking as a language for 
describing certain aspects of the universe, Kay noted that all human beings have an innate 
capacity for verbal language, but that the same cannot be said for written language, 
science, and deductive mathematics, because these are not found in every culture or 
society.  This point suggests that whatever computational-thinking-as-a-language might be, 
human beings will not learn computational thinking in the same way that they learn to 
speak.  On the other hand, he also noted that a powerful aspect of computational thinking 
entails the ability to create a language well adapted to a personally relevant purpose—and 
indeed that this ability could be taught to students. 

Edward Fox suggested that computational thinking does have a long historical tail.  
“Computational thinking is innate in the human species,” he said, and “through telling 
stories our ancestors modeled and represented reality and they passed that on to other 
people and they enriched those models to carry out exploring, discovering, and sustaining 
life.”  Today, exploration of and discovery in digital information are central activities of 
human life.  Computers enable modern discovery and allow humans to access and organize 
information in a way that has not been done before. Despite its novelty, according to Fox, 
accessing digital information is “still a part of this modeling and representing, something 
that we do uniquely and have newer ways to explain and enrich.” 

 

2.4 COMPUTATIONAL THINKING AS THE AUTOMATION OF ABSTRACTIONS  

 
A number of workshop participants supported the claim that computational thinking 

focuses on the process of creating and managing abstractions, and defining relationships 
between layers of abstraction.  Robert Constable pointed out that although physics and 
mathematics are also centrally concerned with abstraction, what is different in 
computational thinking is that the layers of abstraction are tightly connected in ways that in 
the natural sciences cannot yet be connected.   

In this view, computational thinking is a tool for explaining and representing 
complexity through automation.  Although mathematics and physics are also centrally 
concerned with using abstraction to manage and control complexity, computational methods 
add another dimension to controlling complexity—that of automation.  Peter Lee argued 
that computational thinking is about “magnifying people’s intelligence through automation 
and problem solving, as well as managing complexity.”  Others pointed to the role of 
modeling and simulation in enabling automation of the management of complexity. 
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To complement this view, Andy diSessa argued that abstractions must be paired 
with grounding if people are to understand the significance of those abstractions.  In 
diSessa’s words, “Abstraction has to connect with their concerns, whether they are menial 
or whether they are grand.  It has to be grounded in people’s beliefs and feelings some way 
or other .”  Owen Astrachan echoed this point, saying that “without the grounded examples, 
we’ll be talking too abstractly, which might work in a room full of abstract thinkers, but it's 
not going to work in rooms full of less abstract thinkers because they need to see what they 
are really going to do.”  Ken Kahn made a related argument that computational thinking 
provides a concretization—the creation of something concrete and tangible—of subjects that 
are typically dominated by abstract concepts.  Kahn felt that an example of such 
concretization is computer games— “They are virtual, of course, but they feel very concrete.  
The important idea is that there is a one-to-one mapping from these concrete things to 
computational abstractions that are much more difficult for most people to grasp.”  Wilensky 
concurred and described how students interacting with models or participatory simulations 
of disease spread developed with NetLogo learn to understand logistic growth of infection 
as an emergent pattern that results from the concrete actions of individuals. 
 
2.5 COMPUTATIONAL THINKING AS A COGNITIVE TOOL 

 
David Moursund saw computational thinking as how to think about tools, a view 

inspired by Donald Norman and David Perkins.  In 1988, Norman wrote The Design of 
Everyday Things8 which talks about “the design of everyday objects and affordances—not 
just physical capabilities of the actor , but also their goals, plans, and values, and so on.” An 
example of affordances created through technology innovation is mass communication 
through the creation of the printing press, radio, television, and so on.  Information 
technology and the computer are a set of new tools with affordances of their own, and 
Moursund noted that realization of affordances depends on the education, training, and 
experience of the user as well as the design of the tool.  Some tools, such as a word 
processor , require more formal training and skills in order to access the affordances they 
offer . Others, through their very design or through imitation, are simpler to manipulate and 
may not require formal training; examples might include telephones or video games. 

In the early 1990s, David Perkins wrote about the concept of “Person Plus.”9 In the 
Person Plus model, three dimensions feed in to augmenting team problem solving (Figure 
2.1). Moursund identified these three dimensions as “tools that expand or extend mental 
capabilities,” such as reading comprehension or mathematical skills; “tools that extend 
physical capabilities,” such as a car , a telescope, or a rake; and finally, “education and 
training” that allow one to effectively utilize tools. Moursund’s final component in the model 
is team problem solving.  He stated, “When I talk about problem solving, problem solving is 
always a team activity.  The team might have a person on it, but the team has…whatever 
that person has learned, the culture they grew up in, the formal/informal education, and so 
on.  So problem solving is always a team-type activity.” This activity usually includes aid 
from physical and mental tools as well as education. Moursund believes that “computational 

                                            
8 Donald Norman, 1988, The Design of Everyday Things, New York: Basic Books.  
9 David Perkins, 1992, Smart Schools: Better Thinking and Learning for Every Child, 

New York: The Free Press. 
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thinking and computers fit into both categories [of tools].” Both formal and informal 
education can help people utilize these tools more effectively.   

Morusund argued that computational thinking fuses the concepts of affordance and 
person with respect to information technology and computers. He spoke about the trend of 
increasing complexity and performance power in each generation of computers and how 
this trend offers new affordances and more sophisticated problem solving: “You can have a 
stick and you can weed your first crops with a stick.  If you get a hoe, it’s a much better 
tool.  But then, with better tools, we move beyond the low-level augmentation or 
amplification, as it’s usually called.  If you get good enough tools, then you can go shooting 
off to the moon and other places.” 

Moursund further noted “What I see in the computer field is that there are oodles of 
tools where it doesn’t take any formal education to learn how to use them….So when we 
talk about computational thinking, we have oodles of tools which are just part of our 
everyday society and life, and which people can learn to use at a level which is personally 
satisfying, extends their capabilities and so on, and you don’t have to go to school to learn 
them.  That seems to me like a pretty important idea.” He went on to say that in many 
aspects of computing and computational thinking, many people are learning on their own 
and learning from each other and focusing on “learning things that they want to do and 
need to do versus the deeper level of learning we’re looking for .... ”  

Roy Pea concurred—“If you actually look at what people do when they're doing 
computational thinking, as an ethnographer , you see them immersed with a whole set of 
tools, they're constantly thinking about the things that have particular properties, 
affordances—they're working with colleagues in a particular way.  They're getting feedback 
from a whole host of resources there.”   

 
If you give everybody a calculator , math doesn’t go away. Thinking and doing are 
needed to represent and help solve problems.  If you get better tools, you can do better 
at it.  What the computer is doing is giving you the better tools, dealing with harder 
problems. 

 
—David Moursund 

 
 

2.6 COMPUTATIONAL THINKING IN CONTEXTS WITHOUT PROGRAMMING 
A COMPUTER 

 
Marcia Linn and several other participants discussed computational thinking as a way 

of approaching complex problems that permeate everyday mental activities made necessary 
because of the ubiquity and increasing omnipresence of computational tools throughout 
modern life.  This way of thinking involves using methods from computer science such as 
debugging, search algorithms, and test cases to address everyday problems involving 
technological resources.  Put differently, the affordances offered by modern information 
technology require reasoning skills such as debugging, test cases, and logical skills to solve 
everyday problems. 

Linn pointed out that even very young children appreciate the Internet and have a 
sense of search, and they often take advantage of electronic devices such as cell phones 
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and computers to access information they want. When 2-year-old Ben wanted to explain 
how a trapeze works to his friend, he demanded that his mother show his friend a trapeze 
on her cell phone. He liked the first example but wanted her to try some of the other search 
results. After a few minutes the battery of the phone died. Ben told his mother to turn the 
phone back on. He was frustrated when she tried to explain that it would take time to 
charge the battery. Ben already understands the power of the Internet and the nature of 
keyword search. Like many of us, he is confused about the limits of electrical power .   

At the other end of the age spectrum, Linn used the example of retirees taking 
advantage of social networking opportunities to plan trips. Jack reported that he upgraded 
his computer to use sites like Trip Advisor to find hotels. He gained ability to select sites that 
primarily serve leisure travelers rather than business travelers. He has begun to analyze the 
sites that support advertising—and worries that they promote the advertised products. He 
prefers sites where the qualifications of the reviewers are available. He has developed a 
theory about who posts on these sites and has started to realize that many people really do 
not articulate their criteria. Jack is using his debugging skills. 

Joshua Danish presented an example of young students engaging in computational 
thinking concepts without using computers in a project on honeybees—specifically to 
understand and represent the process honeybees use to collect nectar for honey.  This 
process involves a beehive sending out scouts to locate flowers with nectar , which then 
return to the hive and do a “dance” to communicate the location of the nectar to the other 
bees. Other bees then return to the specified location to harvest the nectar .  

Danish said,  “Here [in Figure 2.2] is a student’s representation in four panels of that 
process, and it’s actually quite nice.  Now, there are limitations to that.  But we’re starting to 
see some of the skills and the resources—and this is a 7-year-old’s drawing—and when 
they’re actually starting to be quite capable of reducing and extracting that process and 
describing it for us.” 

In the first phase of activity, students engaged in an individualized “creation of 
representations”—that is, each student drew his or her own detailed picture of a single bee 
(subject to certain minimum requirements, such as having three body sections and including 
the proper names of key parts of the bee) and also a series of four panels (Figure 2.2) 
depicting the process bees use to find nectar , collect nectar , and then communicate the 
location of the nectar to the hive.  

Next, the children were asked to engage in “participatory modeling” of the bees 
collecting nectar , an idea first introduced as such by Uri Wilensky and Mitchel Resnick.10  
Children produced a skit in which they represented flowers and bees and proceeded to 
demonstrate how a bee goes about collecting nectar .  Danish argued that this activity allows 
students “to leverage their ability and make sense of talk and gesture and body position as 
a way of refining their model and understanding the parts of it that they may not have 
formal language for yet.” 

For example, the students were able to refine their models through repetition, 
“debug” their models through collaboration, and explore sequencing.  Danish described a 
boy representing a bee that had just checked for nectar—his peers did not actually see him 

                                            
10 Uri Wilensky and Mitchel Resnick, 1999, “Thinking in Levels: A Dynamic Systems 

Perspective to Making Sense of the World,” Journal of Science Education and Technology 
(1): 
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using a proboscis, and so “they were challenging his model, saying, we don’t see the part of 
the bee that’s important for that part of the process.”  The teacher is also able to introduce 
the concepts of sequencing and algorithms by engaging in a dialog with the student:  

 
T:  All right, well, there isn’t any nectar at that flower .  So if you were a bee, would 
you stay at the flower? 
S: No. 
T: What would you do? 
S: I would go back, and not do a dance because I don’t know where to find nectar . 
   
According to Danish, this exchange illustrates how the student engaging “in a 

context where he’s able to talk about the sort of if-then choices of the algorithm that the 
bees follow as they go back collecting nectar .  And the can then be phrased in a way that’s 
incredibly relevant to him.” 

In the third phase, students engaged in participatory simulation in which they had to 
instruct other children to carry out the search for nectar as the bees would.  As they tried to 
act the instructions provided by the scout bees, the children engaged in a real-time 
debugging process by updating their instructions as they went along.  This phase forces the 
students into “thinking about the implications of their modeling choices.”  “As these 
students are running around and not quite finding the nectar , it’s easy for this boy to say, 
it’s by the red rake.  So there’s some online monitoring of whether or not his instructions or 
his program were successful.  But then there’s also some retroactive consideration ‘some 
nice reflection on whether that model did the job. So the student’s then able to say, ‘I 
should have said by the handle of the rake. ’”   

Only in the fourth phase did students encounter any actual computer technology—
with the help of an instructor , students modeled the process and predicted outcomes using 
a program called Bee-Sign, developed to provide a simulation environment for students to 
model bee searches. 

A second example of computational thinking in a non-IT context was provided by 
Ursula Wolz, who reported on an effort to teach to middle school students computational 
thinking skills through the journalistic use of interactive media.  She described the project as 
focusing on a “nondidactic collaborative model of problem solving.”  Journalism provides an 
attractive context for students who do not consider themselves technically inclined.   

Wolz argued that journalism mirrors many of the processes involved in working with 
computers, especially programming.  “In journalism, one must pitch a story, research it, 
interview, collect data, shoot video, write, edit, send it to the editor , re-write, add sidebars, 
resubmit, fact check, debug the story, and loop until the editor signs off on it.  If one 
assumes the computer acts as an editor , then one can take note of a very familiar series of 
activities involved in computational thinking.”  The students had news teams, supervised by 
a teacher and guidance counselors, that worked to produce an online magazine. The 
students researched, interviewed, and wrote stories, and they created video and animation 
in Scratch.  They also successfully used the computing environment used to support the 
course to collaborate, write, edit, and publish multimedia stories as part of the journalism 
process. 
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A third example of computational thinking without computers was provided by Tim 
Bell, who described the Computer Science Unplugged Project.11  His talk included a couple of 
illustrations: 

 
• User interfaces.  Students examine the interface provided in a digital watch. In 

many digital watches, a button is included that turns the watch face from a clock 
to a stop watch, and another button that starts and stops the stop watch.  
According to Bell, “Suddenly the kids realize that this is a very simple interface, 
which they probably didn’t even think was an interface, on their wrist.” This 
realization empowers them to recognize interfaces in other objects and apply 
learned concepts when interacting with those objects.  User interfaces are an 
important element of computational thinking because they create a well-defined 
decoupling between the parts of the system that interact directly with users and 
the rest of the system.  User interfaces thus afford a structured and systematized 
method of entering input into a program that in turn affects its behavior .  User 
interfaces also afford users such methods for seeing program outputs. 

• Routing.  Each student wears a t-shirt of a different color (Figure 2.3).  
Corresponding to each color are two pieces of fruit and every student except one 
starts with two pieces of fruit.  One student starts with only one piece of fruit of 
the appropriate color .  The goal is to have both pieces of fruit end up in the 
hands of the child with the corresponding color shirt, that is, “the oranges go to 
the girl with the orange t-shirt and the green apples go to the girl with the green 
t-shirt” , and so on.  The constraint on any method of passing fruit is that each 
student can only pass something to someone who has an empty hand, and he or 
she can only pass something to a neighbor .  This puzzle is similar to the kinds of 
problems that a computer scientist might face, and students can experiment with 
different routing topologies.  Routing is an important element of computational 
thinking because it encapsulates the idea of how information can be passed in 
different paths through intermediate nodes to a specified final destination. 

 
A third example of computational thinking without the use of technology per se was 

provided in a personal anecdote from Owen Astrachan.  He described different solutions to 
a word puzzle in which the problem solver must change a given 5-letter word (e.g., “white”) 
to another 5-letter word (e.g., “house”) by making only a single letter change at each step, 
subject to the constraint that each intermediate word must also be a real dictionary word.  
Astrachan’s solution was based on making a graph and doing a breadth-first search through 
that graph.  His solution required 16 steps.  His brother , an English major , solved the 
problem in 15 steps, apparently without using computational thinking.  Astrachan then 
asked why, and saw that his brother’s solution was based on the fact that his brother’s 
dictionary had more words in it—“sough” was in his brother’s dictionary but not in his.  With 
the addition of that word to Astrachan’s solution, he was able to solve the problem in 14 
steps.  Astrachan said that this story illustrates computational thinking in action and 

                                            
11 Tim Bell, Ian H. Witten, and Mike Fellows, 2006, Computer Science Unplugged: An 

Enrichment and Extension Programme for Primary Aged-Children. Canterbury, New Zealand: 
Computer Science Unplugged. 
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computational thinking in context, and helps to demonstrate “what's going on with people 
around us who don't think computationally.” 

Allan Collins argued that one key feature of computational thinking is 
representational competence, which he described as the effective application of 
computational means of representation of knowledge.  The illustration Collins offered was a 
low-tech experiment in developing representational competence in fourth graders who were 
asked to “find representations for the heights” of various fast-growing plants.  The children 
were broken up into several groups, and each group of kids would try to come up with its 
own representations. While there were a number of ideas considered, the class eventually 
decided to “use a bar graph with small ranges of plants. . . like from 10 inches to 12 inches, 
and they would have a bar for each two inches.”12 

 
And then in terms of the survey results that we got, the majority. . . said the most 
important thing they learned was programming and video editing.  And half said 
that their best work was in programming.  And unlike some of the kids that Alan and 
Roy were talking about, these are working-class children who would not necessarily 
have access to this level of computing unless it was through a program like this.   

—Ursula Wolz 
 

As computation came in, it started producing all sorts of new forms of 
representation, both structural forms and process forms, particularly the 
dynamic process forms. . . things like production rules and frames and semantic 
networks and the constraint satisfaction systems were all new ways to think 
about representing knowledge. . . . And so my claim is that one of the things 
that we should be concerned about is how to get this kind of representational 
competence.  We need to start thinking more seriously about how we can 
convey some of that power . 

—Allan Collins 
 
 

2.7 THE ROLE OF COMPUTERS AND TECHNOLOGY 

 
An obvious question arises in the consideration of computational thinking.  How and 

to what extent do computers per se relate to computational thinking? 
A first point is that the term ”computer” can refer to a mechanical or an electronic 

computer , or to a human computer (indeed, the first connotation of the word ”computer” 
was that of a human who performed mathematical computations).  So a computer is an 
essential aspect of computational thinking to the extent that it is an agent that can 
deterministically interpret a set of instructions in an unambigous manner . 

                                            
12 Collins also cited the work of Rich Lehrer and Leona Schauble and their work with 

really young kids getting them to think about how to represent distributions and statistical 
reasoning. Richard Lehrer and Leona Schauble, 2004, “Modeling Natural Variation Through 
Distribution,” American Educational Research Journal, 41(3):635-679.  
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A more common intepretation of the question relates to whether or not a competent 
computational thinker is necessarily facile with the use of modern information technology to 
solve problems and to do other useful things.  Workshop participants observed that 
information technology has advanced dramatically throughout its history, and rapid change 
is likely to characterize future information technology.  Moreover , computers and 
computation will become increasingly important to society and across a number of 
disciplines.  As one participant put it, “I think we are here today to think about what 
everybody should know” in the face of such rapid change.  

Many participants argued that the ability to develop facility with new technologies is 
a part of computational thinking. Computational thinking in this view involves finding the 
right technology for a problem and applying the technology to resolve the problem. This 
might require learning how to use the appropriate technology, debugging the solution, and 
communicating the outcome. For example, to represent a complex phenomenon such as an 
ecosystem, the moves in a chess game, or the trajectory of a baseball, the computational 
thinker might explore alternative technologies, select a candidate, and test its effectiveness. 
This skill is essential in undergraduate programs, useful in everyday life, and growing in 
importance in precollege courses. In this view computers and other computational devices 
enable computational thinking.  

One participant argued that what makes computational thinking especially relevant is 
that computers, whether mechanical or human, are the agents for executing “computational 
thoughts,” and computers have become partners and collaborators in discovery.  Further , 
unlike household appliances or an automobile, computers are relevant to a vast number of 
different applications, such as searching for information, developing a budget, tracking 
individuals, composing music, and so on.  While not disagreeing with this sentiment, others 
at the workshop argued strongly that because computers are not restricted to mechanical 
computers but instead can refer to human agents, computational thinking becomes relevant 
to individuals outside the context of mechanical computers—and thus to a much larger cross 
section of society. 
 

2.8 A COLLABORATIVE DIMENSION TO COMPUTATIONAL THINKING 

 
Modern information technology is at least as much about dispersed, real-time 

communication as it is about automation.  Edward Fox noted that “what we see happening 
a lot today, especially with the Web and multimedia and other things, is that the 
[computational thinking] reflection takes place with the help of other people, too.  We can 
share videos and we see what other people did and we comment on those.  We have all this 
Web 2.0 and so forth, where these become social processes, and debugging becomes part 
of our society, as well as of solving our problems.” 

Building on this notion, a number of participants suggested that computational 
thinking could be regarded as a group phenomenon as well as an individual one.  That is, 
groups, too, can engage in computational thinking to develop representations, debug 
processes, and so on, resulting in a collective process of discovery that is richer than that of 
any single individual.   Wolz argued this point when she said that “one of the things that 
annoys me is when we talk about some of the great discoveries that happened by an 
individual—they never happened by an individual.  There is a huge body of literature 
emerging, for example, in terms of what Leonardo did and who was around, and the same 
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thing about Newton....We have to keep reminding ourselves that it isn’t about ownership.  
It’s about the community and the culture that’s around you that allows you to have the 
ideas.” 

Allan Collins related collaboration to the notion of computational thinking as a 
fundamental skill analogous to reading and writing literacy.  He pointed out that developing 
reading and writing literacy is not simply a matter of technical skills, but also arguably 
entails a social community.  In Collins’ words, “We learn from the company we keep. . . . 
People will learn to read and write if the people they admire, care about, the communities 
they belong to, are readers and writers.” Thus, he argued, achieving a comparable literacy 
with respect to computational thinking will require the fostering and development of 
communities that value computational thinking—some of which exist today, though not in 
large numbers and not widely accessible.  

Kevin Ashley introduced an example of collaborative computational thinking from the 
legal field. Over time, the legal community performs testing and adaptation of laws in 
response to changing social contexts. He pointed out, “Often the hypotheticals are informed 
by changes in societal values over a period of time; this is dynamic.  The old law has to be 
reevaluated, reinterpreted in the context of the changing social values.  The hypotheticals—
the specific examples that they try out to see how that would be dealt with under the 
proposed rule and whether that is a good outcome or not in light of those values—are the 
dynamic engine for adapting the rules and interpretations to the new circumstances.” 

 
I mean, in some sense, I think the message that Roy [Pea] is delivering, that I, 
[and] Mitchel [Resnick] are delivering, is that we need to start thinking about how to 
create communities of people who care about computational thinking and who are 
doing it.                       

                                                                                        —Allan Collins 
 

2.9 WHAT COMPUTATIONAL THINKING IS NOT 

 
Several participants suggested that it might be easier to articulate what 

computational thinking is not.  For example, Robert Constable argued that computer 
literacy—traditionally seen as the ability to use specific programs or features of given 
computer systems such as Word or Excel—does not demonstrate the ability to engage in 
computational thinking.  (By contrast, he noted that one can know a great deal about 
computational thinking and computing concepts without knowing much about computers 
beyond how to get on the Internet and use an Internet browser .) 

Along with a number of other workshop participants, Gerald Sussman argued that 
computational thinking was also not equivalent to computer science.  Alhough 
computational thinking and computer science share some elements, he said that 
“computational thinking is a certain part of computer science. Mathematicians talk about 
mathematical thinking. Statisticians talk about statistical thinking. I think that computer 
scientists should talk about computational thinking. ”  To illustrate, he said that “scientific 
thinking is about apples and oranges and how they may be different or the same. 
Mathematical thinking is about spheres and where they have areas and volume and the fact 
that they may involve a particularly high number of dimensions.  Computational thinking is 
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about how a group of people can cut and share an apple so that each person feels he or 
she got a fair share of the apple.” 

Other participants felt that computational thinking was the outcome of a natural 
evolution in our understanding of computer science.  For example, Peter Denning suggested 
that computational thinking is not the same as previous conceptions of computer science, 
but rather another instantiation of the discipline (Box 2.3). [Boxes and figures for each 
chapter are located at the end of the chapter in this prepublication document.  The final 
document will present boxes and figures close to their call-outs in the text.] 

Larry Snyder noted that computational thinking was not the same as fluency with 
information technology (FIT)13 (Appendix C), although they do share many commonalities 
(Box 2.4).  For example, many of the features often ascribed to computational thinking are 
also part of a fluency curriculum including both concepts and capabilities.  These concepts 
include algorithmic thinking, managing complexity, debugging, thinking technologically, 
universality, and so on.  Indeed, he suggested that the primary difference was the fact that 
FITness includes a skills component, which is designed to enable individuals to use common 
current applications.  By contrast, computational thinking tends to put less emphasis on 
specific technical skills in favor of broad problem-solving abilities.  

Snyder also called attention to a philosophical evolution regarding computing-related 
teaching.  The FITness report was published in 199914, when it was controversial to teach 
conceptual material regarding information technology to non majors.  Snyder argued that 
today, such teaching is routine, at least in 4-year university programs.   He thus proposed 
the following sketch for this philosophical evolution: 

   
• The general public is uninformed about and indifferent to information technology. 
• The general public recognizes the need for computer literacy—how to use a 

computer—a necessary skill as computers begin to penetrate into everyday life. 
• The general public begins to see the limitations of skills-only training, which leads to 

a desire for FITness—fluency with information technology—that exposes citizens to 
the essential concepts and capabilities of information technology.  The skills of 
FITness are gradually de-emphasized as the citizenry learns to pick up without 
formal instruction the skills needed to use computer applications. 

• The general public is increasingly exposed to and literate with the skills of how to 
use information technology, thus eliminating the need for much formal instruction in 
skills.  Computational thinking, which to first order is comprised of FITness without 
the skills component, becomes the emerging focus of formal education.  
Computational thinking then expands the array of concepts and capabilities beyond 
those included in the original 1999 formulation of FITness. 
 
Others saw computational thinking as a way of thinking that is qualitatively distinct 

from fluency and emerging across a broad array of disciplines.  The ubiquitous nature of 

                                            
13 NRC, 1999, Being Fluent with Information Technology, Washington, DC: The 

National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482. 
Accessed December 28, 2009. 

14 NRC, 1999, Being Fluent with Information Technology, Washington, DC: The 
National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482. 
Accessed December 28, 2009. 

http://www.nap.edu/catalog.php?record_id=6482
http://www.nap.edu/catalog.php?record_id=6482
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computational tools impacts all aspects of modern life and requires people to adopt new 
modes of thinking to use these tools effectively.  These modes of thinking are emerging not 
just in computer science but in every field.  

 
 

I would like to propose that this is actually a three-dimensional problem. We have aspects 
of computational thinking or computing, we have the other disciplines that we are talking 
about connecting with, and we have pedagogy, the different levels and so forth. We are 
trying to populate a three-dimensional matrix with the best situations in each of these 
different settings and figure out which ones are the ones that work.  
                                                                                                            –Edward A. Fox 
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Box 2.1 Who Is “Everyone”? 

 
Workshop participants offered a number of definitions of “everyone.”  Many of the 

examples of computational thinking offered were directed at scientists and engineers.  A 
few examples were connected to the needs of professionals in nontechnical fields, such as 
archeology and law.  Thus, by implication, computational thinking was thought to be 
relevant to a broad swath of individuals with college and postgraduate educations.   

Others discussed the possibility of computational thinking for K-12 students.  Of 
course, K-12 spans a broad range.  High school students take courses that address some 
topics that involve the same computational-thinking-related activities found in 
undergraduate courses.  K-8 instruction is the focus of modeling and simulation 
environments such as Scratch and LOGO, and the NetLogo modeling and simulation 
environment is used primarily in middle and high schools as well as in university courses.  
Curricular innovations such as the honeybee example of Danish (see Figure 2.2) illustrate 
the possibilities.  

Participants did not explore the relevance of computational thinking to noncollege 
educated adults in any detail. (Hoffman did recount a tale of a group of thieves that 
attempted to steal a large piece of construction equipment.  While the thieves prepared for 
most of the basic logistics surrounding the crime, they did not ultimately understand the 
computational–thinking-based technology at work in the system, and their efforts were 
ultimately thwarted.  In particular , several men attempted to steal a piece of Caterpillar 
construction equipment by loading it on a truck to haul it away. The equipment had an 
active condition-based maintenance system within it broadcasting its exact location and 
condition as the thieves attempted to run off with the machine. They did not get far .) This 
topic will be explored further in the committee’s second workshop. 
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Box 2.2 The Role of Programming in FITness 

 
The 1999 NRC report Being Fluent with Information Technology addressed the role 

of programming in achieving fluency with information technology (what that report called 
FITness).  The report defined programming as “the construction of a specification 
(sequence of instructions or program) for solving a problem by an agent other than the 
programmer . . . .  [Programming] entails “decomposing the problem into a sequence of 
steps and specifying them sufficiently precisely, unambiguously, and primitively that the 
interpreting agent, usually a computer , can effectively realize the intended solution” (p. 42). 

Computer programming in a standard programming language meets this definition, 
of course, but programming arises in many other cases in which the agent is a human and 
the language is English.  Giving directions to soccer players to find a particular field in a city, 
especially one not identifiable by numeric street/avenue coordinates, constitutes 
programming by this definition.  A player is the agent interpreting or executing the 
instructions.  Recipes with precise quantities of ingredients and precisely described 
preparation and cooking steps are programs executed by cooks.  Toy manufacturers write 
programs, called assembly instructions, for parents to follow, and the Internal Revenue 
Service (IRS) writes the program that taxpayers follow for deductible IRA contributions.   

Critical to the programming enterprise is specification that meets the conditions 
"precisely" and "primitively." 

 
• "Precise" specifications are essential to provide assurance that the agent can 

determine which actions are to be performed and in what order , so that the intended 
result is achieved.  Avoiding ambiguity is obviously crucial, but even seemingly 
unambiguous commands can fail.  For example, "turn right" fails if the soccer players 
can approach the intersection from either the east or the west, and so "turn north" is 
preferred.  Similarly, "beat" and "fold in" are not synonyms for "stir" when combining 
ingredients, and so successful recipes use precise terminology selected with great 
care.  An important nontechnology advantage of programming knowledge is that the 
need for precision can promote precision in everyday communication. 

 
• "Primitive" specifications are essential to provide assurance that the steps to be 

performed are within the operational repertoire of the executing agent.  The 
programmer may understand the task as "pi times R squared," but if the executing 
agent doesn't know what "squared" means or how to accomplish it, then the 
programmer must express the task in more primitive terms, perhaps revising it to "pi 
times R times R."  For many taxpayers, the word "qualifying" in the IRS's instruction 
phrase "subtract qualifying contributions" would likely fail the test for primitiveness, 
because they would not readily understand what the term means. 

 
Although programming can be as simple as giving a few commands—preheat oven 

to 350 degrees, combine dry ingredients, stir in eggs, press into greased loaf pan, bake for 
20 minutes—most solutions require the use of conditional instructions and repetition of 
groups of instructions. 

Conditional instructions are those that may or may not be performed, depending on 
the input to the program.  Repeated instruction execution is a second essential 
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programming construct, since it allows a program, for example, to process any number of 
data items rather than just a fixed number.   In addition, FITness also requires experience 
with functional decomposition and functional abstraction.  These are the powerful 
mechanisms used by programmers to solve large problems (functional decomposition) and 
to reuse their earlier programming efforts (functional abstraction).  

Finally, the 1999 report argued that while FITness does imply a basic programming 
ability, that ability need not be acquired in using a conventional programming language.  
For example, certain spreadsheet operations and advanced HTML programming for Web 
pages, among others, demand an understanding of enough programming concepts that 
they can provide this basic programming experience.  Such applications will often yield more 
personally relevant opportunities to learn programming than programming in a conventional 
programming language.  
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Box 2.3 Great Principles of Computing  
 
In 2003, Peter Denning initiated the “Great Principles of Computing” project, whose 

purpose is to express the activities of computer science in a framework that is similar to that 
which guides scientists in other domains in expressing what it is that they do.  During the 
workshop, Denning said that he and his colleagues are very interested in “the fundamentals 
of the field,” the things that are “timeless and. . . also illustrate the depth and richness of 
the discourse that we have built up in computing over the years.”  Denning’s Great 
Principles of Computing break down into seven categories: computation, communication, 
coordination, recollection, automation, evaluation, and design.  

Denning’s framework portrays computer science as a combination of engineering, 
mathematics, and science.  During the workshop, Denning argued that a legitimate science 
is based on “knowledge, experimental methods, reproducibility, surprising predictions 
complemented by performing art, and studies of natural objects,” and hence that computer 
science should be included under this rubric.  He acknowledged that “there has always been 
controversy about whether computer science studies natural objects,” but expressed the 
belief that “other fields are now accepting that information processes are part of the basic 
aspects of nature.”  He further suggested that this acceptance stems from evolving the 
definition of computer science away from a strict focus on computing machines—“We are 
coming to see computation as the principle and the computer as the tool.  Instead of the 
computer being at the center of what we study, computation is at the center of what we 
study.  That shift in perspective allows us to see computation in nature.” 

 
 

I know some people have been saying things like, computational thinking is a new way to 
define computer science. Computational thinking is a part of computer science, but is not 
the whole story. 

—Peter Denning 
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Box 2.4 On the Relationship Between Computational Thinking and Fluency With Information 
Technology 

 
A person who is highly capable of computational thinking—a computational thinker—

is one who has adopted the thinking habits and reasoning methods of computer scientists.  
A person who is fluent with information technology is one who has adopted a specific menu 
of facts, concepts, and thinking habits of computer scientists.   In this sense, computational 
thinking is broader than fluency.   

On the other hand, because the fluency menu includes algorithmic thinking and a 
variety of intellectual capabilities such as sustained logical reasoning and debugging, there 
is tremendous overlap between computational thinking and fluency.  When discussing 
specific topics (as opposed to levels of understanding of a topic), there are strong 
similarities between the intellectual approaches embedded in each.  Both emphasize 
abstraction, algorithmic thinking, problem solving, logical reasoning, levels of abstraction, 
universality, debugging, technological point of view, representations, and so on. Such strong 
similarities are why the knowledge needed and acquirable as “basic computational thinking” 
would likely approximate what is known by a person fluent with information technology. 

The primary difference between computational thinking and fluency is in focus.  In 
one view of this difference, the primary emphasis of pedagogical efforts in fluency is quite 
clearly on the general population, and there is relatively little emphasis on its applicability to 
advanced topics of study.  By contrast, computational thinking is believed to be valuable 
across the board, both for the everyday citizen and for the advanced professional.  Indeed, 
many of the examples of computational thinking that advocates invoke are derived from the 
application of computational thinking in service of these advanced professionals in a variety 
of problem domains.  Another view of the difference between computational thinking and 
fluency sees computational thinking as emphasizing conceptual understanding and fluency 
as emphasizing applications across a broad range of topics and problem domains. 

Another difference is that whereas fluency prescribes a variety of skills that enable a 
citizen to use certain computer-enabled devices daily, computational thinking is not 
concerned at all with such skills—such skills are assumed.  Fluency does include a set of 10 
concepts about computing and 10 intellectual capabilities that include many of the habits of 
mind often captured in descriptions of computational thinking, but an important purpose of 
including these concepts and capabilities is to support lifelong learning about computing.  

Computational thinking and fluency should not be placed in opposition to each other , 
though they are definitely not the same thing.  Computational thinking is a grand vision in 
which people acquire the thinking habits of computer scientists commensurate with their 
levels of education; fluency, though not originally formulated this way, can be seen as a 
practical implementation of computational thinking for all citizens.  This difference reflects 
the differing origins of the studies involved—the Being Fluent report and its characterization 
of fluency with information technology emerged from responding to a request for 
recommendations on what the public should know about information technology, while the 
present report on computational thinking emerged from a vision of how beneficial wider use 
of thinking like a computer scientist would be. 
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Figure 2.1 Perkins on problem solving.  ORIGINAL SOURCE: David Perkins, 1992, Smart 
Schools: Better Thinking and Learning for Every Child, New York: The Free Press.  
Adaptation from David Moursund (workshop presenter), University of Oregon. 
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Figure 2.2 A dance of the bees.  An elementary student’s four-panel drawing modeling a 
complex sequence—the process bees use to communicate the location of a viable source of 
nectar .  SOURCE: Joshua Danish, Indiana University. 
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Figure 2.3 Routing fruit (packets).  SOURCE: Tim Bell, University of Canterbury-
Christchurch, New Zealand 
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3. Looking Outward 
 

3.1 THE RELATIONSHIP OF COMPUTATIONAL THINKING TO MATHEMATICS 
AND ENGINEERING 

 
For some, computational thinking is careful reasoning about the methods of doing 

things that complements and combines mathematical and engineering thinking. The special 
relationship of computational thinking to mathematics is historical, but looking toward the 
future, computational thinking will be critical in the social and life sciences as well.  
Computational thinking currently plays an important role in psychology, linguistics, graphics, 
and economics and is playing an increasing role in complex engineering efforts such as 
nanoscience and health. Computational thinking will apply much more broadly than most of 
the other scientific modes of thought. The conceptual space to which computational thinking 
applies is much broader than most people imagine, and many of the advances are 
independent of the usual constraints on natural science. 
 
3.1.1. Mathematical Thinking 
 

Computational thinking is closely related to, but not identical with, mathematical 
thinking.  Both are deeply involved with abstraction and reasoning with recognized 
simplified models.  Gerald Sussman argued that computational thinking and mathematics 
both have an “underlying linguistic structure… [that is] language for precise descriptions 
and about how to do things and language describing the structure of things....such 
languages are essential to clear thinking.  But mathematical thinking is more about abstract 
structure than abstract methodology.”  Jeannette Wing also added the qualifier that while 
similar to mathematical thinking in many respects, computational thinking does have to 
consider the physical constraints of the underlying computer (whether machine or human). 

Paulo Blikstein highlighted that since both mathematics and computational thinking 
are tools for representation, there may be an opportunity to use computational thinking to 
represent complex processes and relationships in a more comprehensible manner than 
mathematics. One example he provided came from his observations of how engineering 
courses were taught. He immediately noticed that within a common engineering course, 
mathematical equations appear “approximately one every 2 minutes.”  Blikstein added that 
often these equations are around 10 variables long, and insufficient time is allocated to 
actually explain the equations. He thinks that “this speaks to the failure of one particular 
way to think about knowledge and one way to represent knowledge, which is representing 
knowledge as differential equations and mathematical forms in general....Computational 
representations might offer a lot of advantages over mathematical representations that we 
might be able to explore.”  

Gerald Sussman gave an example of teaching students how to analyze electrical 
circuits.  He noted that the typical pedagogical approach for this problem is to teach the 
node method—which in practice many students find difficult to implement in any practical 
way in solving problems in circuit theory.  However , presenting students with a well-written 
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computer program designed to solve such problems as an expert would enable them to 
internalize the program themselves and execute it much as that expert would. 

 
3.1.2. Engineering 
 

Several workshop participants recognized an overlap between engineering and 
computational thinking.   Even if it is not formally accepted in the engineering community, 
engineering schools are “doing a lot of computational thinking,” said Blikstein.  Wing argued 
that both computational thinkers and engineers think about design, constraints, safety, 
performance, and efficiency. Design issues considered include “simplicity, elegance, 
usability, modifiability, maintainability, and cost.  Wing said that “Computational thinking is 
guided by particular concerns/constraints such as speed, space, and power [and 
computational thinking is] more like physics and engineering in this respect. . . . [It is] these 
kinds of concerns that determine how good an abstraction is.  When we are defining 
abstractions, of course, it is very similar to engineering thinking.”   

At the same time, computational thinking is unlike engineering. As Wing pointed out 
“In software we can basically do anything; we can actually build virtual worlds that are 
unconstrained by physical reality.”   Sussman argued that as contrasted to engineering 
involving physical objects, “Computational thinking is engineering where we are not given a 
hard time by the fact that the physical world produces tolerances, that there is error in the 
construction of parts. As a consequence, instead of being limited by tolerances and that sort 
of thing, as in, things like mechanical or electrical engineering, we are only limited by the 
things we can think about, by the complexity that we can control in our minds.”  In other 
words, computational thinking invents the abstractions that it manipulates. 

Peter Lee noted that several of the 14 engineering grand challenges for the 21st 
century identified by the National Academy of Engineering had a strong information 
technology/computer science/computational thinking flavor to them.  These included 
reverse engineering of the human brain; advancing personalized learning; securing 
cyberspace; enhancing virtual reality; advancing health informatics; and engineering the 
tools of scientific discovery.15 

One important aspect of the computational thinking—engineering connection is 
managing complexity.  Engineered systems are becoming more and more complex.  But Bill 
Wulf noted that software engineering was arguably the first field to face challenges related 
to complexity, and the need to manage complexity is important in computational thinking.  
As noted in the Being Fluent with Information Technology report,16 managing complexity 
entails tradeoffs.  For example, one solution to a problem may involve complex design but 
entail straightforward implementation, whereas another may involve a simple design but a 
costly implementation.  A solution will often result in components of a system interacting in 
complex, unexpected ways, and the resources available to implement a solution may be 

                                            
15 See National Academy of Engineering, “Grand Challenges for Engineering,” 

National Academies, http://www.engineeringchallenges.org/ (accessed December 28, 
2009). 

16 NRC, 1999, Being Fluent with Information Technology, Washington, DC: The 
National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482. 
Accessed December 28, 2009. 

http://www.engineeringchallenges.org/
http://www.nap.edu/catalog.php?record_id=6482
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inadequate.  Managing such dimensions of a problem’s solution is an exercise in managing 
complexity. 

 
 

So I like to think about computational thinking as complementing and combining 
mathematical and engineering thinking.  For instance, we clearly draw on mathematics 
as our foundations.  We also draw on engineering, since our systems actually operate in 
the real world.   
                                                                                                       –Jeanette Wing 

 

3.2 DISCIPLINARY APPLICATIONS OF COMPUTATIONAL THINKING 

 
Workshop participants shared their experiences in applying computational thinking in 

different fields to illustrate how computational thinking might be relevant.  Brian Blake 
described the exchange as “trying to understand how computational thinking, as it is 
embedded in computer science or computational fields, is used in non computational fields 
to see how what we know in the computational field can be used in other fields.”  The hope 
was expressed that By describing some of these different applications, it would be possible 
to identify concepts of computational thinking through its application in one discipline that 
could be utilized to benefit another discipline and indeed to better define and describe 
computational thinking. 

 
• Medicine and health care.  Peter Lee described how sequencing techniques 

commonly employed in computational thinking can help to improve the chance of 
success in matching organ donors. On a small scale, the task of cross-matching 
multiple donors and patients is a relatively simple computational thinking exercise. At 
the large scale at which the medical profession would need to perform these 
matches to improve donation matching across the nation, this type of matching 
poses a significant intellectual challenge for computational thinking practitioners.  
Ian Foster noted that the medical profession is currently trying to cope with 
enormous amounts of crucial but confidential data. This information must be easily 
accessed and transferred among medical professionals to improve care but protected 
from access and misuse by those outside the medical profession. Foster argued that 
with the advent of health care informatics, “health care is arguably no longer a 
medical problem, but a computing problem.”  

• Archeology.  Edward Fox works with archeologists attempting to look at trends 
across different excavation sites. He said that the archeologists he collaborates with 
have come to realize that “if you are going to study archaeological trends across 
different areas, and the commerce that takes place between sites, then you have to 
merge the data and you have to use common terminology.”   For example, 
archaeology often depends on archived data, where differences in recording 
protocols, terms, measurement units, and languages make accessibility a 
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challenge.17  Moreover , archeological researchers need to organize large amounts of 
qualitative data so that they can be retrieved computationally.  Computational 
thinking approaches to information retrieval, data fusion, and information integration 
are especially useful in this area, since there is a need “to classify and search for 
numerical, textual, and visual data simultaneously” and a need for “an e-science that 
marries the interconnectedness of digital research tools with the introspection 
enabled by traditional recordkeeping.”18 

• Traffic engineering.  Modern-day traffic lights are usually run by computer systems 
that alternate traffic signals based on algorithms and embedded sensors and 
networks. The most effective traffic algorithms are built data collected on traffic 
patterns and other relevant variables in order to optimize flow. The processes by 
which these algorithms are developed and tested involve computational thinking. 
The methods skilled drivers may use to navigate them also reflect computational 
thinking. Hoffmann noted the example of the veteran bus driver: “The bus driver 
should know that if he steps on it [the gas pedal] too fast, he gets stuck at the next 
traffic light anyway.” 

• Cancer research.  Peter Lee noted that agent-based modeling simulations have 
helped researchers understand that a “tumor is not really a simple group of cells that 
have their own agenda.  They tend to live in an environment where the cells nearby 
sort of form a nurturing matrix for them and respond to various requests from the 
tumor for additional blood vessels, for example, or nutrients or whatever . This is 
something that invalidates a lot of the existing medical science and puts it more into 
a systems-thinking context, something that I think we [computational thinking 
scholars] can contribute to.” 

• Public policy.  An increasingly technology-based society creates the need for techno-
savvy policy makers.   For example, important issues related to information 
technology arise regarding privacy, copyright, and spectrum allocation are prominent 
on the public policy, issues for which an understanding of computational thinking is 
very helpful.  Bob Sproull illustrated the point by suggesting that a legislator might 
need an understanding of computational thinking in order to be a smart customer of 
a complicated IT system for the Social Security Administration or the Internal 
Revenue Service.   

• Music.  Peter Lee described a summer program where young students attempt to 
write computer programs that allow computers to compose original music. The 
program challenged students to write a “computer program that could compose or a 
machine that could take as input some description of Bach and then produce 
beautiful music.” The process of building such systems makes use of computational 
thinking in three ways. First, it requires that a programmer analyze and decompose 
musical qualities into abstract computational thinking concepts. Second, the program 
must construct algorithms and programming language that access and demonstrate 

                                            
17 Dean R. Snow, Mark Gahegan, C. Lee Giles, Kenneth G. Hirth, George R. Milner , 

Prasenjit Mitra, and James Z. Wang, 2009, “Cybertools and Archeology,” Science 311 
(5763):958-959. 

18 Dean R. Snow, Mark Gahegan, C. Lee Giles, Kenneth G. Hirth, George R. Milner , 
Prasenjit Mitra, and James Z. Wang, 2009, “Cybertools and Archeology,” Science 311 
(5763):958-959. 
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the aforementioned musical qualities artificially. Finally, by observing this process of 
decomposition and composition, one can learn more about human intelligence and 
problem-solving processes.   

• Law.  Kevin Ashley discussed four ways computational thinking applications advance 
the legal practice: logic debugging, testing, modeling, and information retrieval.  
 
— Debugging through the reduction or elimination of “syntactic ambiguity” or 

“logical ambiguity” is almost always present in any kind of legal drafting. 
Whether in statutes, contracts, or insurance policies, unintentional ambiguities in 
legal language are common and must be debugged. Ashley commented that this 
process involves “getting the logic right, in a manner that’s kind of similar to 
what computer programmers have to do in getting the logic right in a line of 
code.”    

— The development of good test cases reflects an important similarity between 
computational and legal thinking—both test propositions (or statements) against 
test cases.  “Test cases are important in debugging in programming as well [as 
in law]—real and hypothetical counterexamples, exceptions, things like that.” 
Ashley pointed out that they can help a legal professional anticipate how 
successful an argument is likely to be by simulating the application across 
various test cases.  

— Modeling complex legal processes and flows can help legal professionals to 
understand “the flow of control through a statute, for the process of statutory 
interpretation, for predicting outcomes, for structured arguments.”  

— Information retrieval techniques are needed for legal information systems that 
can represent the justifications and context in a reasonable way.  Ashley pointed 
to the role of precedent, or relevant preceding judgments in similar cases, in 
legal arguments.  Computational thinking can help lawyers to develop good 
targeted searches based on complex criteria. 

 
Ashley also expressed a caution that computational thinking might lead to over–
mechanization of complex processes. “Legal problem solving is highly context-
dependent in ways that may not be anticipated.  As a law professor , I have to be 
very cautious about recommending computational thinking to law students, because 
it might lead them to focus more on a mechanical application of a predefined 
method rather than on the context and the opportunities in the actual problem to be 
solved.  I have an obligation not to mislead.  We don’t want mechanical 
jurisprudence here.  I think this caution probably applies in a lot of other areas as 
well. ” 

• Al Aho referred to Christos Papadimitriou’s talk “The Algorithmic Lens: How the 
Computational Perspective Is Transforming the Sciences”19 as an exemplar of a 
compelling story about the power of computational thinking.  Briefly, Papadimitriou 
presented a number of vignettes from mathematics, physics, biology, economics and 
social science to show the unifying power of computation across these disciplines: 

                                            
19 Christos H. Papadimitriou, 2009, The Algorithmic Lens: How the Computational 

Perspective is Transforming the Sciences.  Available at http://www.scivee.tv/node/10204. 
Accessed December 28, 2009. 

http://www.scivee.tv/node/10204
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— In mathematics, the classic P versus NP from theoretical computer science was 

named as one of the seven Clay Institute Millennium Problems20, which pose the 
deepest, most fundamental, and consequential open problems in the field. 

— In physics, quantum computation provides a method for exploring and testing 
the limits of quantum mechanics.  Further , how phase transitions can be 
explained in statistical mechanics turns out to have deep similarities to the way 
that certain randomized algorithms converge exponentially faster when their 
parameters are in the right range (analogous to the temperature/pressure of a 
physical system being at the critical point of a transition). 

— In biology, understanding the mechanism of evolution can be productively 
approached as an algorithmic problem.  Using optimization theory and search to 
compare simulated annealing and genetic algorithms as ways to sketch 
landscapes of fitness functions, it can be shown that genetic algorithms tend to 
find plateaus in the landscape, while simulated annealing finds peaks.  Plateaus 
in the landscape have the characteristic of being relatively broad and thus 
relatively stable for many genetic combinations.  Since simulated annealing is 
analogous to asexual reproduction and genetic algorithms to sexual 
reproduction, this approach suggests that rather than maximization of fitness, 
sexual reproduction favors adequacy, or more specifically the ability of a genetic 
variant to function adequately in the presence of a wide variety of genetic 
partners.   

— In economics and social science, the Internet—an IT artifact constructed but 
never designed—must be studied using the methods of natural science (e.g., 
observation and experimentation) and in the context of the complex social 
system it enables and serves. It is thus an ideal test bed for sociological analysis 
and experimentation. 

 
Complementing these perspectives, a number of participants including Bob 

Constable noted the importance of acknowledging a two-way street for connecting 
computational thinking to various disciplines.  That is, it is not only that other disciplines can 
benefit from the use of computational thinking in their respective domains—it is also the 
case that the computer science and information science disciplines from which much of 
computational thinking is derived benefit from understanding the basis of knowledge 
creation in those other disciplines.  Indeed, those other disciplines provide a context for 
computational thinking that often leads to new discoveries in computer science and 
information science themselves. 
 

3.3 COMPUTATIONAL THINKING ACROSS DIFFERENT DISCIPLINES 

 
The subsections below are organized around different elements of computational 

thinking that have widespread application in multiple disciplines. 
 
                                            
20 For more information see Clay Mathematice Institute, “P vs NP Problem,” 

http://www.claymath.org/millennium/P_vs_NP/ (accessed December 28, 2009). 

http://www.claymath.org/millennium/P_vs_NP/
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3.3.1. Problem Solving/Debugging  

 
Several speakers emphasized debugging of systems as an important application of 

computational thinking.  In the real world, people often encounter systems with which they 
are unfamiliar and whose internal workings they do not understand.  Robert Sproull pointed 
out that when humans encounter such systems, they often attempt to establish “a known 
state” of the system or a state of functionality that they find familiar or intuitive.   This 
behavior is an aspect of modeling the unfamiliar system in their minds, despite the fact they 
may not necessarily know what sorts of algorithms are inside.  

To develop these models and identify known states, an individual (or group) builds 
on previous experience and encounters with similar systems to generate hypotheses about 
how it works, about what its parts are, and so on. Debugging can then be done in a variety 
of ways. One can, for instance, adjust parameter settings to attempt to debug a system. 
 
You know something about debugging that you have learned from dealing with even more 
complex things.  It carries over as a set of techniques, not just because it was your 
computer program that you were debugging rather than a dishwasher.  
                                                                                                             –Robert Sproull 

 

3.3.2. Testing 

 
In the sense used here, testing refers to empirical activities that provide information 

about whether and how a software artifact or system performs in accordance with its 
performance requirements.  For all but the simplest artifacts, it is not feasible to test a 
system for all possible inputs, and so good testing procedures call for test suites, which 
generally involve typical cases, boundary cases, and potential failure conditions.   For a 
listing of different kinds of testing appropriate at different stages in an artifact’s lifetime, see 
http://www.softwareqatest.com/qatfaq1.html#FAQ1_10. 

Children encounter many opportunities to engage in testing. One participant used 
the example of a robotics competition to explain how students engage in testing. Robots are 
designed to perform specific tasks, and designers must test their performance. Even if there 
is no computing inside the robot, Sproull noted, “even it’s just a joystick driving a servo, you 
have to figure out how to test it. ” 

 

3.3.3. Data Mining and Information Retrieval 

 
Popular culture often describes the modern society in a constant state of information 

overload. Computational thinking provides intellectual tools to help manage information.  
For example, a computational thinker will understand a variety of ways for retrieving 
information.  Edward Fox commented that computational thinking can help people who are 
accessing lots of information from a number of data sources to represent it in some 
common way and to find ways to communicate their results. 

  

http://www.softwareqatest.com/qatfaq1.html#FAQ1_10
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3.3.4. Concurrency and Parallelism  
 

Ursula Wolz described a number of ways to expose students to the computational 
concepts of concurrency and parallelism.  For example, a college junior majoring in music 
took Wolz’s introductory course to fulfill a quantitative reasoning requirement.  Wolz’s 
course uses Scratch, an application for manipulating animated characters, and according to 
Wolz, “the first thing he ran up against was the problem of synchronicity between music 
and animation.”   With a few simple examples (offered by a more advanced student), the 
music major said, “I get it. ”  Wolz offered a second example of a sixth grade student who 
worked on animation of comparable sophistication using PowerPoint.  In both cases, Wolz 
suggested that their successes in understanding concurrency and parallelism were due not 
so much to the Scratch graphical environment as to the metaphors that help convey 
understanding of the underlying concept.  

Mitchel Resnick described a simple programming exercise in which the user 
choreographs a dance for an animated cat. The “code” is structured to represent 
interlocking blocks. Each block contains a specific set of instructions.  For example, if a user 
wants the sound of drums followed by the cat moving forward, then she would take the 
drum block, interlock the forward step block and indicate the number of steps forward.  In 
this particular activity, users can see for themselves how programming, sequencing, 
algorithmic thinking, and parallel thinking play out.   In Resnick’s words, “Parallelism comes 
very naturally.  If I say, while it’s doing that, I also want to keep changing the color . . . 
[then] I just have another stack that says I want to forever change the color . So it takes 
some of the computational ideas of sequencing, and parallelism, and tries to make it very 
easy to put together and explore these ideas.” 
 
3.3.5. Modeling 

 
To illustrate computational thinking, Mitchel Resnick used a personal example based 

on his standing Monday tennis match.  Every week, he and his partner Ken record who wins 
how many games in each set, the number of games, and the number of sets.  At the end of 
the year , they have a record of the number of games and the number of sets that each 
player won.  One year, they noticed that Ken had won 54 percent of the games but 71 
percent of the sets, and they asked, “What’s the explanation behind that?”  

Coming from very different disciplines—Ken in biology and Mitchel in computer 
science/education—each player conceptualized and approached this question very 
differently.   Ken’s explanation the next week was based on handwritten calculations 
involving expansions of a binomial expression.  Mitch’s explanation was based on a 
simulation of matches and replicating the data using children’s instructional software called 
Scratch.  The program was developed to determine “randomly for each game that Ken has 
a 55 percent chance of winning [and] I have a 45 percent chance of winning.” As the 
simulation was repeatedly run, the total wins-to-losses ratio closely reflected the real-life 
outcome. 

More generally, modeling is a means by which one represents a system or a process 
in order to learn more about it and manage complexity.  One participant mentioned the 
power of computational thinking to improve the effective development of complex models 
through knowledge of scale.  Peter Lee argued that a computational thinker “understands 
the consequences of scale” and can thus “think very big and very small and understand the 
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tipping points at each point.”  As more data are gathered, the more sophisticated the model 
one can build to describe a system. If there is sufficient fidelity in a model, one can perform 
necessary testing within the model itself. Computers and computation can dramatically 
increase the amount of data represented in these models and thus a model’s fidelity. An 
example using computational thinking to model plane crash testing is shown in Figure 3.1. 

Paulo Blikstein complemented this perspective when he described bifocal modeling, 
wherein the physical and virtual were blended in models, sometimes by using the physical 
world as inputs to a model, by calibrating a model, or by comparing the output of model 
mechanisms to sensor data.  He argued that such blending was becoming more common in 
the practice of science and was also a powerful means of engaging students. 

Yasmin Kafai noted an example of the importance of understanding models and their 
limitations: “Government authorities often use models to make predictions, but people often 
don't understand how these models were made, what the parameters are, or what kind of 
assumptions are underlying them...here we have a really great example...[in talking] about 
computational thinking for everyone and kind of as a goal for citizenship [in] that citizens 
need to also understand how decisions are being made and what some of the pitfalls in the 
models will be.”  Wilensky added that computational thinking involves more than consuming 
models, experimenting with models, or even constructing them, but also creating a culture 
of model critique. 
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Figure 3.1 Modeling of an airplane crash. 
 
(Left) Image of a crash test measuring the force of impact on an actual F-4 Phantom 
airplane; image courtesy of Sandia National Labs.  (Right)  Image of a computational model 
of the force of impact on an aircraft; image courtesy of Christoph Hoffman, Purdue 
University. 
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4. Relationship to Past and Ongoing Efforts  
 
 

4.1 PREVIOUS WORK 
 
A number of past activities and reports have argued for introducing computational 

thinking to populations broader than undergraduates and graduate students matriculating in 
computer science or information technology.  In addition, several reports have sought to 
identify what computer scientists believe is the intellectual core of their discipline. 

 
4.1.1. LOGO 

 
In the 1960s, Seymour Papert introduced the notion of a computer-based 

microworld that could serve as an environment in which children could learn “to manipulate, 
to extend, to apply to projects, thereby gaining a greater and more articulate mastery of the 
world, a sense of the power of applied knowledge and a self-confidently realistic image of 
himself as an intellectual agent.”  He argued that computation could have “a profound 
impact by concretizing and elucidating many previously subtle concepts in psychology, 
linguistics, biology, and the foundations of logic and mathematics” by giving a child the 
ability “to articulate the working of his own mind and particularly the interaction between 
himself and reality in the course of learning and thinking.”21 

As an example, Papert offered mathematics.  He argued that many children never 
see the point of the formal use of language, which is what much of mathematics teaches.  
They also rarely, if ever , have the experience of designing a formalism of their own adapted 
to a particular personally meaningful task.   But anyone who programs a computer does 
these things routinely.  Through the construction of specialized formal microworlds, the 
LOGO environment is intended to provide appropriate terminology and concepts that 
facilitate the formal use of language and the child-driven extension of that language in 
useful ways.  By programming the computer to do interesting things, Papert argued, 
children can become highly sophisticated and articulate in the art of developing models and 
developing formal systems.  

A number of workshop participants, Uri Wilenksy among them, also pointed out that 
although many of the intellectual ideas introduced by the LOGO movement are quite similar 
to those underlying the advocacy of computational thinking, there are many significant 
differences in the larger environment in which these activities were and are embedded.  
Forty years ago, when LOGO was first introduced, computational infrastructure was 
expensive, and access to networking and personal computing was non-existent for all 
practical purposes.  Today, computational devices are everywhere, and access to 
networking and personal computing are quite commonplace.  Moreover , the idea that 
computational technology could have a deep impact on everyday life for most citizens—
outlandish then—is now easily accepted, and thus the ubiquitous presence of computational 

                                            
21 Seymour Papert, 1975, “Teaching Children Thinking,” Journal of Structural 

Language 4: 219-29. 
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devices in our lives is an important motivator for systems of formal education to provide 
individuals with appropriate intellectual tools for managing and using such devices 
effectively. 
 
4.1.2. Fluency with Information Technology (FIT)   
 

The 1999 report Being fluent with Information Technology, also known as the 
FITness report or the Fluency report, was an effort by the Computer Science and 
Telecommunications Board of the National Research Council to articulate what everyone 
should know about information technology.22 

In formulating the relevant knowledge base, this effort identified three equally 
important categories of knowledge: cognitive/intellectual capabilities, computational 
concepts, and IT skills. Capabilities focus on logical reasoning and problem solving such as 
debugging. Concepts represent the fundamental ideas that underlie technology such as 
programming and algorithms. Finally, skills are the actual knowledge required when using 
information technology, such as creating a Word document or sending an Email.  

The attempt to define “everyone” was more problematic—although the members of 
the responsible committee likely believed, as individuals, that all K-12 students should be 
exposed to the elements of IT fluency, and indeed should become fluent with information 
technology, none of the committee members had any particular standing to make such an 
assertion, and in the end the committee limited the scope of its recommendations to all 
graduates of four-year colleges and universities. 

The executive summary of Being Fluent with Information Technology is reprinted as 
Appendix C. 
 
I think the goals of the fluency report were [answering the question] what should 
everybody know to be a more effective user of technology?  And I think that 
computational thinking focuses more on [the] intellectual activities that apply to all of 
the sciences and engineering that we talked about, and [also] all those other areas that 
could benefit from computation.  So it seems to me that they’re slightly different 
objectives.  I don't see them as in conflict. . . . they overlap a lot because they do speak 
to a similar set of phenomena. 
                                                                                                  —Lawrence Snyder  
 
4.1.3. Computing the Future 

 
In 1992, the National Research Council issued the report Computing the Future,23 

which (among other things) was the first Academy effort to articulate the nature of 
computer science and engineering as an intellectual discipline.  That report noted the 
following (pp. 19-24): 

                                            
22 NRC, 1999, Being Fluent with Information Technology, Washington, DC: National 

Academy Press. Available at http://www.nap.edu/catalog.php?record_id=6482. Accessed 
December 28, 2009. 

23 NRC, 1992, Computing the Future: A Broader Agenda for Computer Science and 
Engineering, Washington, DC: National Academies Press. Available at 
http://www.nap.edu/catalog.php?record_id=1982. Accessed December 28, 2009. 

http://www.nap.edu/catalog.php?record_id=6482
http://www.nap.edu/catalog.php?record_id=1982
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Intellectually, the "science" in "computer science and engineering" connotes 
understanding of computing activities, through mathematical and engineering models 
and based on theory and abstraction.  The term "engineering" in "computer science 
and engineering" refers to the practical application, based on abstraction and design, 
of the scientific principles and methodologies to the development and maintenance 
of computer systems—be they composed of hardware, software, or both. [The notion 
of CS&E as a discipline based on theory, abstraction, and design is described in Peter 
Denning, Douglas E. Comer , David Gries, Michael C. Mulder , Allen Tucker , Joe Turner , 
and Paul R. Young, 1989, "Computing as a Discipline," Communications of the ACM, 
32(1):9-23, January.]  Thus both science and engineering characterize the approach 
of CS&E professionals to their object of study.  

 
What is the object of study?  For the physicist, the object of study may be an atom 
or a star .  For the biologist, it may be a cell or a plant.  But computer scientists and 
engineers focus on information, on the ways of representing and processing 
information, and on the machines and systems that perform these tasks. 

 
The key intellectual themes in CS&E are algorithmic thinking, the representation of 
information, and computer programs.  An algorithm is an unambiguous sequence of 
steps for processing information, and computer scientists and engineers tend to 
believe in an algorithmic approach to solving problems.  In the words of Donald 
Knuth, one of the leaders of CS&E: 

 
CS&E is a field that attracts a different kind of thinker .  I believe that one 
who is a natural computer scientist thinks algorithmically.  Such people are 
especially good at dealing with situations where different rules apply in 
different cases; they are individuals who can rapidly change levels of 
abstraction, simultaneously seeing things "in the large" and "in the small." 
[Personal communication to the NRC Committee to Assess the Scope and 
Direction of Computer Science and Technology, Donald Knuth, March 10, 
1992 letter .] 
 

The second key theme is the selection of appropriate representations of information; 
indeed, designing data structures is often the first step in designing an algorithm.  
Much as with physics, where picking the right frame of reference and right 
coordinate system is critical to a simple solution, picking one data structure or 
another can make a problem easy or hard, its solution slow or fast.   

 
The issues are twofold:  (1) how should the abstraction be represented, and (2) how 
should the representation be properly structured to allow efficient access for 
common operations?  A classic example is the problem of representing parts, 
suppliers, and customers.  Each of these entities is represented by its attributes 
(e.g., a customer has a name, an address, a billing number , and so on).  Each 
supplier has a price list, and each customer has a set of outstanding orders to each 
supplier .  Thus there are five record types:  parts, suppliers, customers, price, and 
orders.  The problem is to organize the data so that it is easy to answer questions 
like:  Which supplier has the lowest price on part P?, or , Who is the largest customer 
of supplier S?  By clustering related data together , and by constructing auxiliary 
indices on the data, it becomes possible to answer such questions quickly without 
having to search the entire database. 
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The two examples below also illustrate the importance of proper representation of 
information: 

 
• A "white pages" telephone directory is arranged by name:  knowing the name, 

it is possible to look up a telephone number .  But a "criss-cross" directory that 
is arranged by number is necessary when one needs to identify the caller 
associated with a given number .  Each directory contains the same 
information, but the different structuring of the information makes each 
directory useful in its own way.  

 
• A circle can be represented by an equation or by a set of points.  A circle to be 

drawn on a display screen may be more conveniently represented as a set of 
points, whereas an equation is a better representation if a problem calls for 
determining if a given point lies inside or outside the circle.   

 
A computer program expresses algorithms and structures information using a 
programming language.  Such languages provide a way to represent an algorithm 
precisely enough that a "high-level" description (i.e., one that is easily understood by 
humans) can be mechanically translated ("compiled") into a "low-level" version that 
the computer can carry out ("execute"); the execution of a program by a computer is 
what allows the algorithm to come alive, instructing the computer to perform the 
tasks the person has requested.  Computer programs are thus the essential link 
between intellectual constructs such as algorithms and information representations 
and the computers that enable the information revolution. 

 
Computer programs enable the computer scientist and engineer to feel the 
excitement of seeing something spring to life from the "mind's eye" and of creating 
information artifacts that have considerable practical utility for people in all walks of 
life.  Fred Brooks has captured the excitement of programming: 

 
The programmer , like the poet, works only slightly removed from pure 
thought-stuff.  He builds castles in the air , creating by the exertion of the 
imagination. . . .  Yet the program construct, unlike the poet's words, is real 
in the sense that it moves and works, producing visible outputs separate 
from the construct itself. . . .  The magic of myth and legend has come true 
in our time.  One types the correct incantation on a keyboard, and a display 
screen comes to life, showing things that never were, nor could be. 
[Frederick Brooks, 1975, The Mythical Man-Month, Reading, MA: Addison-
Wesley.] 

 
Programmers are in equal portions playwright and puppeteer , working as a novelist 
would if he could make his characters come to life simply by touching the keys of his 
typewriter .  As Ivan Sutherland, the father of computer graphics, has said,  

 
Through computer displays I have landed an airplane on the deck of a 
moving carrier , observed a nuclear particle hit a potential well, flown in a 
rocket at nearly the speed of light, and watched a computer reveal its 
innermost workings. [Ivan Sutherland, 1970, "Computer Displays," Scientific 
American, 222(6):56-81.] 
 

Programming is an enormously challenging intellectual activity.  Apart from deciding 
on appropriate algorithms and representations of information, perhaps the most 
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fundamental issue in developing computer programs arises from the fact that the 
computer (unlike other similar devices such as non-programmable calculators) has 
the ability to take different courses of action based on the outcome of various 
decisions.  Here are three examples of decisions that programmers convey to a 
computer:  

 
• Find a particular name in a list and dial the telephone number associated with it. 
• If this point lies within this circle then color it black; otherwise color it white.   
• While the input data are greater than zero, display them on the screen.   

 
When a program does not involve such decisions, the exact sequence of steps (i.e., 
the "execution path") is known in advance.  But in a program that involves many 
such decisions, the sequence of steps cannot be known in advance.  Thus the 
programmer must anticipate all possible execution paths.  The problem is that the 
number of possible paths grows very rapidly with the number of decisions:  a 
program with only 10 "yes" or "no" decisions can have over 1000 possible paths, and 
one with 20 such decisions can have over 1 million. 

. . . .  
 
The themes of algorithms, programs, and information representation also provide 
material for intellectual study in and of themselves, often with important practical 
results.  The study of algorithms within CS&E is as challenging as any area of 
mathematics; it has practical importance as well, since improperly chosen algorithms 
may solve problems in a highly inefficient manner , and problems can have intrinsic 
limits on how many steps are needed to solve them.  The study of programs is a 
broad area, ranging from the highly formal study of mathematically proving 
programs correct to very practical considerations regarding tools with which to 
specify, write, debug, maintain, and modify very large software systems (otherwise 
called software engineering).  Information representation is the central theme 
underlying the study of data structures (how information can best be represented for 
computer processing) and much of human-computer interaction (how information 
can best be represented to maximize its utility for human beings). 
 
 

4.1.4. Reflections on the Field 
 

The 2004 NRC report, Computer Science: Reflections on the Field, Reflections from 
the Field included an essay by Gerald Sussman entitled “The Legacy of Computer Science.”24  
Quoting from that essay (pp. 181-183): 

 
“Computer Science is not a science, and its ultimate significance has little to do with 
computers. The computer revolution is a revolution in the way we think and in the 
way we express what we think. The essence of this change is the emergence of what 
might best be called procedural epistemology—the study of the structure of 

                                            
24 NRC, 2004, “The Legacy of Computer Science,” pp. 190-183, in Computer Science: 

Reflections on the Field, Reflections from the Field, Washington, D.C.: The National 
Academies Press. Available at http://www.nap.edu/catalog.php?record_id=11106. Accessed 
December 28, 2009. 

http://www.nap.edu/catalog.php?record_id=11106
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knowledge from an imperative point of view, as opposed to the more declarative 
point of view taken by classical mathematical subjects. Traditional mathematics 
provides a framework for dealing precisely with notions of ‘what is. ’ Computation 
provides a framework for dealing precisely with notions of ‘how to.’” [Harold Abelson, 
Gerald Jay Sussman, with Julie Sussman, 1985, Structure and Interpretation of 
Computer Programs, (1st edition), Cambridge, MA, MIT Press.] 

 
Computation provides us with new tools to express ourselves. This has already had 
an impact on the way we teach other engineering subjects. For example, one often 
hears a student or teacher complain that the student knows the “theory” of the 
material but cannot effectively solve problems. We should not be surprised: the 
student has no formal way to learn technique. We expect the student to learn to 
solve problems by an inefficient process: the student watches the teacher solve a 
few problems, hoping to abstract the general procedures from the teacher's behavior 
with particular examples. The student is never given any instructions on how to 
abstract from examples, nor is the student given any language for expressing what 
has been learned. It is hard to learn what one cannot express. 

 
In particular , in an introductory subject on electrical circuits we show students the 
mathematical descriptions of the behaviors of idealized circuit elements such as 
resistors, capacitors, inductors, diodes, and transistors. We also show them the 
formulation of Kirchoff's laws, which describe the behaviors of interconnections. 
From these facts it is possible, in principle, to deduce the behavior of an 
interconnected combination of components. However , it is not easy to teach the 
techniques of circuit analysis. The problem is that for most interesting circuits there 
are many equations and the equations are quite complicated. So it takes 
organizational skills and judgment to effectively formulate the useful equations and 
to deduce the interesting behaviors from those equations.  

 
Traditionally, we try to communicate these skills by carefully solving selected 
problems on a blackboard, explaining our reasoning and organization. We hope that 
the students can learn by emulation, from our examples. However , the process of 
induction of a general plan from specific examples does not work very well, so it 
takes many examples and much hard work on the part of the faculty and students to 
transfer the skills.  

 
However , if I can assume that my students are literate in a computer programming 
language, then I can use programs to communicate ideas about how to solve 
problems: I can write programs that describe the general technique of solving a class 
of problems and give that program to the students to read. Such a program is 
precise and unambiguous—it can be executed by a dumb computer! In a nicely 
designed computer language a well-written program can be read by students, who 
will then have a precise description of the general method to guide their 
understanding. With a readable program and a few well-chosen examples it is much 
easier to learn the skills. Such intellectual skills are very hard to transfer without the 
medium of computer programming. Indeed, “a computer language is not just a way 
of getting a computer to perform operations but rather it is a novel formal medium 
for expressing ideas about methodology. Thus programs must be written for people 
to read, and only incidentally for machines to execute.” [Harold Abelson, Gerald Jay 
Sussman, with Julie Sussman, 1985, Structure and Interpretation of Computer 
Programs, (1st edition), Cambridge, MA, MIT Press.] 
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I have used computational descriptions to communicate methodological ideas in 
teaching subjects in electrical circuits and in signals and systems. Jack Wisdom and I 
have written a book and are teaching a class that uses computational techniques to 
communicate a deeper understanding of classical mechanics. Our class is targeted 
for advanced undergraduates and graduate students in physics and engineering. In 
our class computational algorithms are used to express the methods used in the 
analysis of dynamical phenomena. Expressing the methods in a computer language 
forces them to be unambiguous and computationally effective. Students are 
expected to read our programs and to extend them and to write new ones. The task 
of formulating a method as a computer-executable program and debugging that 
program is a powerful exercise in the learning process. Also, once formalized 
procedurally, a mathematical idea becomes a tool that can be used directly to 
compute results. 

 
4.1.5. Engineering in K-12 Education 

 
The National Academy of Engineering (NAE) and its Committee on K-12 Engineering 

Education issued a report arguing that an engineering component has been largely missing 
in recent attempts to improve science, technology, engineering, and mathematics (STEM) 
education.25  The NAE committee found this fact particularly troubling in light of its view that 
“. . . K-12 engineering education may improve student learning and achievement in science 
and mathematics; increase awareness of engineering and the work of engineers; boost 
youth interest in pursuing engineering as a career; and increase the technological literacy of 
all students.”  That committee also hypothesized that the “future of K-12 engineering 
education” will depend on whether engineering becomes a more interconnected component 
of STEM education or remains a separate subject.  

The report noted that unlike mathematics and science education in the K-12 years, 
engineering education does not have much in the way of teaching standards, testing and 
assessment, or teacher professional development.  More broadly, the committee held that 
there is “no widely accepted vision of what K-12 engineering education should include or 
accomplish. This lack of consensus reflects the ad hoc development of educational materials 
in engineering and that no major effort has been made to define the content of K-12 
engineering in a rigorous way. . . . These shortcomings may be the result, at least in part of 
the absence of a clear description of which engineering knowledge, skills, and habits of 
mind are most important, how they relate to and build on one another , and how and when 
(i.e. at what age) they should be introduced to students.” 

To improve engineering education, the report noted the importance of emphasizing 
engineering design, incorporating important and developmentally appropriate mathematics, 
science, and technology knowledge skills (among which were certain “computational 
methods”), and promoting engineering habits of mind (i.e., the values, attitudes, and 
thinking skills associated with engineering).  Such considerations are relevant to the 
discussion of this workshop report because of the strong connections between many such 

                                            
25 National Academy of Engineering and National Research Council, 2009, 

Engineering in K-12 Education: Understanding the Status and Improving the Prospects, 
Washington, DC: The National Academies Press. Available at 
http://www.nap.edu/catalog.php?record_id=12635. Accessed December 28, 2009. 
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engineering habits of mind and computational thinking.  The report also called for research 
on various dimensions of engineering education (including its connection to other STEM 
fields) and for the initiation of a national dialogue on preparing K-12 educators to address 
the special challenges of engineering education at the K-12 level.   

 
4.1.6. Technically Speaking 
 

In 2002, the National Academy of Engineering and the NRC issued the report 
Technically Speaking: Why All Americans Need to Know More About Technology26 and its 
companion website.27   This report advanced a view of technological literacy that 
encompasses three interdependent dimensions—knowledge, ways of thinking and acting, 
and capabilities with the goal of providing people “with tools to participate intelligently and 
thoughtfully in the world around them”:  

 
• Knowledge for technological literacy consists of a recognition of the pervasiveness of 

technology in everyday life, an understanding of basic engineering concepts, an 
understanding of the limitations of the engineering process, a knowledge of ways 
technology has shaped human history and vise versa, a recognition that technology 
reflect the values and culture of society, a recognition of technology risk, both 
anticipated and unanticipated, and an awareness that technology development 
involves cost/benefit tradeoffs.  

• Ways of thinking and acting for technological literacy include questioning oneself and 
others regarding benefits and risks associated with technology, actively seeking 
information about new technologies, and actively taking part in decisions about the 
development and use of technology.  

• Some of the basic capabilities the report points to as characteristic in a technically 
literate person include certain hands-on technical skills like word processing or 
navigating online, an ability to identify and fix simple technical malfunctions, and an 
ability to think about benefits and risk in basic mathematical terms.  

 
These three dimensions have approximate mappings to the tripartite framework of 

FITness (foundational concepts, intellectual capabilities, and contemporary skills), as 
discussed in Box 2.2.   
 

4.2 SOME DRIVERS OF CHANGE  

 
Workshop participants described a number of ongoing efforts to revise and reform 

computing-related education.  Implicit in these efforts is a presumption that they will all 
                                            
26 National Academy of Engineering and National Research Council, 2002, Technically 

Speaking: Why All Americans Need to Know More About Technology, Washington, DC: 
National Academy Press. Available at http://www.nap.edu/catalog.php?record_id=10250. 
Accessed December 28, 2009. 

27 For the companion website, see National Academy of Engineering, “Technically 
Speaking,” National Academies.  Available at http://www.nae.edu/techlit (accessed 
December 28, 2009). 

http://www.nap.edu/catalog.php?record_id=10250
http://www.nae.edu/techlit
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have to address computational thinking in some form, but for the most part, their efforts 
had not converged on a common definition of the term.  

 
 

4.2.1. The National Science Foundation CPATH Program 
 

 
In 2008, the Computer and Information Science and Engineering (CISE) Directorate 

of the National Science Foundation launched a program entitled “CISE Pathways to 
Revitalized Undergraduate Computing Education” (CPATH).28  This program emphasizes the 
development of student competencies in computing concepts, methods, technologies, and 
tools (which collectively constitute what the program calls computational thinking) in 
approaches that promise to revitalize undergraduate education.   

Founded on the importance of preparing a globally competitive U.S. workforce that 
is able to apply computational thinking to a broad range of societal challenges and 
opportunities, the program seeks to contribute to the development of a globally competitive 
U.S. workforce with computational thinking competencies essential to U.S. leadership in the 
global innovation enterprise; to increase the number of students developing computational 
thinking competencies by infusing computational thinking learning opportunities into 
undergraduate education in the core computing fields—computer and information science 
and engineering—and in other fields of study; and to demonstrate transformative 
computational thinking-focused undergraduate education models that are replicable across a 
variety of institutions.   

Although aimed primarily at revitalizing undergraduate education, the program also 
encourages the exploration of new models that extend from institutions of higher education 
into the K-12 environment.  Activities that engage K-12 teachers and students to facilitate 
the seamless transition of secondary students into undergraduate programs focused on 
computational thinking are particularly encouraged.   

 
 

4.2.2. The Computing Research Association Education Committee 
 

Andrew Bernat described for workshop participants some of the present-day efforts 
(2009) of the Computing Research Association Education Committee.29  Stressing the 
importance of revitalizing computing education and noting the centrality of computers and 
computing to a number of fields—art, music, history, and archeology, as well as the 
traditional sciences and engineering—Bernat said that these efforts focus on “the computing 

                                            
28 For more information, see NSF Directorate for Computer and Information Science 

and Engineering (CISE), “CISE Pathways to Revitalized Undergraduate Computing Education 
(CPATH) FAQ Site,” NSF , http://www.nsf.gov/cise/funding/cpath_faq.jsp. (accessed 
December 28, 2009) and CISE Pathways to Revitalized Undergraduate Computing Education  
(CPATH) Program Summary,” NSF , 
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=500025&org=CNS&from=home 
(accessesd December 28, 2009). 

29 For more information visit The Computing Research Association (CRA), 
http://www.cra.org/, (accessed December 28, 2009.  

http://www.nsf.gov/cise/funding/cpath_faq.jsp
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=500025&org=CNS&from=home
http://www.cra.org/
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education that a researcher in any discipline needs to know and think about and 
understand.  It is not intended to be the undergraduate curriculum that someone going on 
to do computer science should be exposed to or should learn.  It’s about researchers in any 
discipline.  What are the core things about computing that everyone needs to understand?”  
Bernat further emphasized that in contrast to groups such as the ACM that are focusing on 
education in computer science, the CRA intends to focus its efforts on computing skill, 
knowledge, and impact outside the computer science discipline.  
 
 
4.2.3. Advanced Placement Computer Science—NSF Broadening Participation 
Program and the College Board   
 
 Jan Cuny described for workshop participants the NSF/College Board collaboration to 
redesign and revitalize the high school Advanced Placement (AP) Computer Science 
curriculum.30,31  According to Cuny, the current CS AP course is inaccessible to students and 
fails to introduce the fundamental concepts of computational thinking.  Cuny expressed the 
hope that a new “gold standard” AP course that addresses these concepts will revive the 
flagging interest of high school students in computer science, information technology, and 
mathematics and will provide a foundation for future study in computing.  

She pointed out that developing the curriculum for this new course is not the most 
challenging aspect.  The hardest part is to gain entry into “resource-strapped schools.”  
Nevertheless, Cuny hopes that this new gold standard CS AP course can be introduced into 
10,000 schools (with a complement of 10,000 teachers trained to teach the course) by 
2014.  She was not unmindful of the challenges, pointing out that most of these teachers 
are not computer scientists themselves. “Most of them are from math or from physics or 
from chemistry and they know how to program. . . but they don’t know about computability. 
They don’t know about algorithm design. There’s a whole lot of stuff that they don’t know. 
So it’s not just in-service preparation meaning bring them in for a week. It’s really 
significant training that we have to provide. And we have to figure out how to make that 
palatable for them.”   

Finally, Cuny raised the related point that it is important to distinguish between ideas 
and concepts that can be tested on a standardized exam and what it means to assess 
whether students can think computationally.  In the absence of a consensus on the scope 
and nature of computational thinking, she noted that it would be very difficult to develop an 
appropriate assessment tool for the latter . 

 
 
4.2.4. Carnegie Mellon University’s Center on Computational Thinking 
 

                                            
30 The College Board, “National Science Foundation Awards $1.8 Million to College 

Board to Redesign AP Science Courses,” The College Board, 
http://www.collegeboard.com/press/releases/51572.html (accessed December 28, 2009). 

31 NSF Directorate fro Computer & Information Science& and Engineering (CISE), 
“Broadening Participation in Computing (BPC),” NSF , 
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13510&org=CNS&from=home 
(accessed December 28, 2009) 

http://www.collegeboard.com/press/releases/51572.html
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13510&org=CNS&from=home


Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop on The Scope and Nature of Computational Thinking 
http://www.nap.edu/catalog/12840.html

51 

 
Carnegie Mellon University’s Center for Computational Thinking is the home to a 

number of projects that focus on using computational thinking to tackle broad social and 
interdisciplinary issues.   According to Peter Lee, these projects—known as PROBlem-
oriented Explorations, or PROBEs in the local vernacular—cover a wide range of ongoing 
research projects, all of which are designed to demonstrate the critical importance of 
computational thinking.  These projects typically engage the sciences, the arts, and 
literature.32   

 
• During the workshop, Lee pointed to the Optimal Kidney Exchange PROBE, which 

uses novel algorithm design and database networking to identify optimal kidney 
matches between donors based on a complex set of criteria. Traditionally, kidney 
matching is done manually by medical experts based on blood type, organ size, 
patient condition, and so on.  The manual methods used by most physicians also 
tend to look at a small number of donors and patients—paired donations (involving 
two donors coordinating their donations) are the most common.  By using larger 
numbers of coordinated donors (8 or 10 or 12 donors at a time), the number of 
organs made available that can match the needs of individual recipients can be 
vastly increased.  However , the complexity of coordinating larger numbers of donors 
is quite daunting, unless efficient computational algorithms can be used to perform 
the search.  The result is that medical experts can match kidneys among a much 
larger number of patients and donors in a number of kidney exchange programs 
more rapidly. More effective kidney exchanges can improve the quality of life for 
those on dialysis current awaiting kidneys, save millions in medical costs for dialysis 
treatments, and save thousands of lives.  

• Discussed on the center’s website, the Performer PROBE is an interactive music 
system for live performance that is capable of composing and accompanying live 
music in different genres, such as classical, rock, and Latin.  33 Unlike systems that 
merely accompany human performed music and require a strict adherence to beat 
and score, Performer will be able to interact with other human musicians, change 
tempo, and even change styles in a manner that is similar to how a human would 
behave in such a situation.  PERFORMER employs modeling, sequencing, 
synchronicity, algorithms, human-computer interaction theory, sensors, and data 
management theory to dissect nuances of music composition and music 
performance.    

• The center’s website also discusses the PROBE on Understanding and Harnessing 
Ensemble Behavior ,34 which uses the “programming” metaphor to understand how 
the behavior of components aggregate to produce behavior in complex systems, 
whether natural or man-made.   Although the complex system is “just” the 
aggregation of its constituent components, the capabilities of the system far exceed 

                                            
32 See The Center for Computational Thinking, “PROBEs,” Carnegie Mellon University, 

http://www.cs.cmu.edu/~CompThink/probes.html (accessed December 28, 2009). 
33 See The Center for Computational Thinking, “PROBEs,” Carnegie Mellon University, 

http://www.cs.cmu.edu/~CompThink/probes.html (accessed December 28, 2009). 
34 See The Center for Computational Thinking, “PROBEs,” Carnegie Mellon University, 

http://www.cs.cmu.edu/~CompThink/probes.html (accessed December 28, 2009). 

http://www.cs.cmu.edu/~CompThink/probes.html
http://www.cs.cmu.edu/~CompThink/probes.html
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the aggregate of the capabilities of those components.   Using a specially developed 
programming language called Meld, the project demonstrates abstraction, 
programming, logic, ensemble engineering, self-organization, robotics, and 
programming in the context of understanding emergent behavior .  Meld is designed 
to streamline the process of programming for ensemble systems, and it works by 
propagating the commands that input through every node in the system, thus saving 
the programmer the time needed to propagate the command herself.  
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5. Open Questions 
 
 

As noted in the preface, NRC workshops are not designed to produce consensus.   
However , although there was little general agreement among workshop participants about 
the essential nature of computational thinking, a number of questions did emerge that are 
worthy of attention in the future. 

 
 

5.1 WHAT IS THE STRUCTURE OF COMPUTATIONAL THINKING? 
 

Throughout the course of the workshop, participants expressed a host of different 
views about the scope and nature of computational thinking.  But even though workshop 
participants generally did not explicitly disagree with views of computational thinking that 
were not identical to their own, almost every participant held his or her own perspective on 
computational thinking that placed greater emphasis on particular aspects or characteristics 
of importance to that individual.   (These different perspectives are described in Section 2.) 

Given this divergence in individual emphases, one possibility concerning structure is 
that computational thinking is simply the union of these different views—a laundry list of 
different characteristics.  On the other hand, such a perspective would be both incoherent 
and deeply unsatisfying to most workshop participants, and there was general agreement 
that a more coherent perspective is needed.  Further thought about many questions 
emerging from the workshop is thus warranted; these questions include: 

 
• What is the core of computational thinking?  
• What are the elements of computational thinking? 
• What is the sequence or trajectory of development of computational thinking? 
• Does computational thinking vary by discipline? 

 
Some of the logical subquestions that follow include: 
 
o What are the logical relationships between the various elements of computational 

thinking? 
o What elements of computational thinking were not discussed in the workshop 

that should be included in subsequent discussions? 
o How and to what extent, if any, is the ability to program an essential aspect of 

computational thinking?  What should be the definition of “programming” in this 
context? 

 
Answers to these questions would provide some structure to computational thinking 

as a systematized mode of thought.   In a 2007 article,1 Thomas Cortina of Carnegie Mellon 

                                            
1 Thomas Cortina, 2007, “An Introduction to Computer Science for Non-majors  

Using Principles of Computation,” Technical Symposium on Computer Science Education, 
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education, 
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University suggests that David Harel's Algorithmics: The Spirit of Computing2 is a good point 
of departure for developing a coherent structure for how different elements of 
computational thinking relate to one another . 

 
 

5.2 HOW CAN A COMPUTATIONAL THINKER BE RECOGNIZED? 
 
Workshop participants grappled with the question of how to determine an 

individual’s competence with computational thinking.  Some workshop participants asked 
how one would determine that a student has mastered basic elements of computational 
thinking, just as one might master basic reading, writing, or arithmetic skills.   Others asked 
how one might certify teachers as having both competence in computational thinking and 
the ability to teach computational thinking. In Ursula Wolz’s words, “What does it mean to 
create teachers who have that kind of literacy, both to read the languages and so that they 
can think about it and express it to their students, and also so that they become facile 
writers?. . . . to make sure that what we are doing is teaching them how to read and write, 
not how to do phonics.” 

Several workshop participants noted the importance of context in computational 
thinking, expressing the view that just as learning arithmetic goes beyond more than 
knowing the algorithms of addition and multiplication to being able to apply these 
algorithms in real-world situations, being a competent computational thinker must include 
the ability to apply computational thinking to actual problems.  That is, even if it is feasible 
to articulate clearly the content of computational thinking, such content becomes 
meaningful only in some specific context. One must use computational thinking in a context 
and must understand the nature of the context to apply computational thinking skills 
effectively. 

The question of generalizability is also important.  Experts in one field are not 
necessarily successful in exploring other fields. Experts may be more facile at learning in 
related domains than students who are not yet expert in any particular domain, but a lack 
of understanding of the related domain will limit the success even of experts.  So, arguably, 
another part of computational thinking is the ability to apply its content to multiple domains 
and to recognize the connections between those applications.   

Along these lines, Richard Lipton expressed this sentiment as follows: “. . . The 
greatest challenge to a computational thinker , to any thinker , is stating the problem in a 
way that will allow a solution.” What are you really trying to accomplish? The ability to 
recognize when the same ‘question is being asked’ or ‘the same problem presented’ can 
facilitate use of computational thinking in new disciplines.    

 
 

                                                                                                                                       
Covington, KY . ACM Special Interest Group on Computer Science Education, March 7-10, 
2007, pp. 218-222. 

 
2 David Harel, 1987, Algorithmics: The Spirit of Computing, 1st Ed., Reading, Mass.: 

Addison-Wesley. 
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5.3 WHAT IS THE CONNECTION BETWEEN TECHNOLOGY AND 
COMPUTATIONAL THINKING? 

 
Workshop participants were divided on the centrality of technology to computational 

thinking.  Some expressed the view that at its core, computational thinking was 
independent of technology—that being a competent computational thinker did not 
necessarily imply anything about one’s ability to use modern information technology.  Some 
participants argued that computational thinking is an emergent property of technological 
advance. As technologies develop they enable new forms of computational thinking.  Others 
believed that the connections between information technology and computational thinking 
were so deep that it effectively makes no sense to regard the two as separate.  In this view, 
the computer—and notions of computer programming—can make the concepts, principles, 
methods, models, and tools of computational thinking tangible, in much the same spirit that 
LOGO was first inspired. 

 
 

5.4 WHAT IS THE BEST PEDAGOGY FOR PROMOTING COMPUTATIONAL 
THINKING? 

 
A great deal of education research in recent years suggests (1) that students can 

learn thinking strategies such as computational thinking as they study a discipline, (2) that 
teachers and curricula can model these strategies for students, and (3) that appropriate 
guidance can enable students to learn to use these strategies independently.  In many 
cases, a key element of “appropriate guidance” consists of the capabilities afforded by a 
suitable computational environment and toolkits, such as programming languages for 
computing and modeling languages for noncomputing domains that are particularly helpful 
in promoting computational thinking. 

Recent exploratory research on technology-enhanced learning suggests that 
computers can facilitate this process by guiding students as they explore complex problems, 
use scientific visualization, and collaborate with peers.3 Such learning environments may 

                                            
3 See, for example, Uri Wilensky and Kenneth Reisman, 2006, “Thinking Like a Wolf, 

a Sheep, or a Firefly: Learning Biology Through Constructing and Testing Computational 
Theories—an Embodied Modeling Approach,” Cognition and Instruction 24(2), 171-209; Uri 
Wilensky and Mitchel Resnick, 1999, “Thinking in Levels: A Dynamic Systems Approach to 
Making Sense of the World,” Journal of Science Education and Technology 8 (1):3-19; Uri 
Wilensky, 2001, “Modeling Nature's Emergent Patterns with NetLogo,” Proceedings of the 
Eurologo 2001 Conference, Linz, Austria;  J.L. Kolodner et al, 2003, “Problem-Based 
Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting 
Learning by Design into Practice,” Journal of the Learning Sciences 12(4):495-548; S. 
Puntambekar and J.L. Kolodner , 2005, “Toward Implementing Distributed Scaffolding: 
Helping Students Learn Science by Design,” Journal of Research in Science Teaching 
42(2):185-217; Y . Kali and M.C. Linn, 2009, “Designing Effective Visualizations for 
Elementary School Science,” Elementary School Journal 109(5):181-198; M.C. Linn, H.S. 
Lee, R. Tinker , F . Husic, and J.L. Chiu, 2006, “Teaching and Assessing Knowledge 
Integration in Science,” Science 313: 1049-1050;  Y .B. Kafai, 2006, “Playing and Making 
Games for Learning: Instructionist and Constructionist Perspectives for Game Studies,” 
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also increase the effectiveness of teachers by synthesizing results from embedded 
assessments, allowing teachers to monitor progress in real time, and handling routine tasks.  

Exploring these questions will be a major focus of the committee’s second workshop. 
 
 

5.5 WHAT IS THE PROPER INSTITUTIONAL ROLE OF THE COMPUTER SCIENCE 
COMMUNITY WITH RESPECT TO COMPUTATIONAL THINKING? 

 
Although there is obviously a close (though not fully understood) cognitive and 

intellectual connection between computational thinking and computer science as a subject 
of study, the role of computer science as a discipline and as a community of individuals who 
call themselves computer scientists in defining and structuring the content of computational 
thinking is much less clear . 

For example, Robert Constable noted that today, university-level discussions 
regarding computational thinking education (or , more precisely, computing) are usually set 
forward by a department of X that believes in the value of computing as a tool for effective 
study of X—and focus on computational thinking in the context of X.  But these efforts 
rarely focus on the abstractions and concepts that computer scientists believe cut across 
specific disciplinary applications of computational thinking.   

Constable further pointed out that even in colleges of computing and information, 
the discussion of computational thinking does not always reach out to the entire university.   
This disconnect occurs despite the attempts of some of these colleges to “teach every 
undergraduate” about computing and digital information by way of general education 
requirements.   

Given this disconnect, he argued, it is thus not surprising that the development of K-
12 computational thinking education has a certain inchoate quality—if the leading schools of 
computing and departments of computer science don’t know how to talk about 
computational thinking, how can others define the content of “computational thinking for 
everyone”? 

A second issue relates to disciplinary “ownership” of computational thinking.  
Because computational thinking is a critical skill in many disciplines, there are already a few 
stakes in the ground from a range of disciplines, such as biology, statistics, and physics.  
This fact led several workshop participants to note the importance of refraining from turf 
wars over which disciplines own what with respect to computational thinking.  

They felt that there were a number of areas of overlap and that this was a positive 
sign. These speakers were reassured by the overlap, believing that it might be a strength 
that everyone wants to claim computational thinking for their own field.   

                                                                                                                                       
Games and Culture 1(1):36-40; Y.B. Kafai and C.C. Ching, 2001, “Affordances of 
Collaborative Software Design Planning for Elementary Students’ Science Talk,” The Journal 
of the Learning Sciences 10(3):323–363.  The papers listed in this footnote are a small 
fraction of the research performed on technology-enhanced learning in the last decade—
what is common to the papers above is that because they were authored, in part, by a 
member of the NRC committee for the workshop reported in this volume, they were more 
familiar to the committee. 
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Another set of workshop participants noted concern that a lack of disciplinary 
ownership could make it difficult to build support and a community sense of responsibility 
for the education of the next generation. They were concerned that other disciplines 
claiming ownership of key components of computational thinking can slow its development 
as a scientific paradigm in and of itself. 

Some argued that computational thinking can help advance a number of disciplines 
and encourage innovation. The inverse situation—lack of deep computational understanding 
and lack of technical communication skills—might even give rise to the stifling of innovation. 
This is a key concern according to columnist Adam C. Engst.  In the article entitled “Have 
We Entered a Post-Literate Technological Age?” he states, “My more serious concern with 
our society's odd fluency with a technology that we cannot easily communicate about is that 
it might slowly stifle innovation.”4   As an example, he notes that a person who is able to 
fluidly navigate an application does not necessarily understand anything about what is going 
on underneath the hood. 

Others argued that computational thinking is inherently multidisciplinary. To engage 
in computational thinking, one must reason about something. By claiming that 
computational thinking can benefit all disciplines, one endorses the idea that computational 
thinking will evolve as it is used in varied disciplines. In addition, the disciplines using 
computational thinking will develop in novel directions as a result of using computational 
thinking.   

 

                                            
4 Adam C. Engst, 2009, “Have We Entered a Post-Literate Technological Age?” 

August 18, TidBITS.com.  Available at http://db.tidbits.com/article/10493. 

http://db.tidbits.com/article/10493
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6. Next Steps 
 
Discussions held at the February 2009 workshop did not reveal general agreement 

among workshop participants about the precise content of computational thinking, let alone 
its structure.  Nevertheless, the lack of explicit disagreement about its elements could be 
taken as reflecting a shared intuition among workshop participants that computational 
thinking, as a mode of thought, has its own distinctive character .   

Building on this shared intuition, it is fair to say that most workshop participants 
agreed that more deliberation is necessary to achieve greater clarity about what is 
encompassed under the rubric of computational thinking and how these elements are 
structured relative to each other .  Toward this end, workshop participants thought that the 
second workshop would have value.  Scheduled to occur in early 2010 and devoted to 
exploring pedagogy and how best to expose students to the ideas of computational 
thinking, the deliberations of this follow-on workshop will be valuable in shedding additional 
light on the content and structure of computational thinking for three reasons.   

First, the diversity of views on the nature of computational thinking allows a great 
deal for exploration and innovation within the boundaries of a shared intuition, even if that 
intuition was not made precise in the first workshop. 

Second, when designing courses, educators often reveal their beliefs about what is 
central to the subjects in question. Thus, a consideration of provocative and innovative 
examples of courses and curricular material related to computational thinking is likely to 
provide valuable further insights into individual perspectives on that topic.  

Lastly, and as noted at the end of Section 4.1, the technological substrate has 
proliferated by orders of magnitude since the late 1960s.  Young people today—the targets 
of K-12 education—are correspondingly far more familiar with various manifestations of 
information technology and thus also more familiar with different contexts in which 
computational thinking can be relevant.  It is hoped that the the pedagogical focus of the 
second workshop will shed additional light on some of these different contexts.  

For these reasons, the committee looks forward to the second workshop with 
anticipation. 
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Appendix A 
 

Workshop Agenda 
 

  

FEBRUARY 19, 2009 
 
8:30 - 8:45 AM 

 

Welcome and Housekeeping 
   Marcia Linn, University of California, Berkeley, Committee Chair 
 

8:45 - 10:30 AM 

 

Panel 1—The Scope and Nature of Computational Thinking 
 
• How is computational thinking different from mathematical 
thinking?   
• How is it different from quantitative reasoning? 
• How is it different from scientific thinking? 
• How is it different from fluency with information technology? 
 
Presenters:   
   Jeannette Wing, National Science Foundation  
   William Wulf, University of Virginia 
   Gerald Sussman, Massachusetts Institute of Technology 
   Peter Lee, Carnegie Mellon University 
  
Committee respondent: Larry Snyder 
 

10:30 - 12:15 PM 

 

Panel 2—Computational Thinking Everywhere (Part I) 
 
• What kinds of problems require computational thinking?  
What are some examples? 
• How, if at all, does computational thinking vary by 
discipline?  What would be the nature of computational thinking for 
physicists, biologists, engineers, lawyers, physicians, historians, 
sociologists, teachers, accountants, homemakers, bus drivers, and 
so on? 
• What are the exposures and experiences needed to 
develop the level of computational thinking needed in various 
disciplines? 
• What are contemporary issues facing the nation that would 
benefit from greater development of computational thinking?   
• What is the value of computational thinking for 
nonscientists? 
• How, if at all, would widespread facility with computational 
thinking enhance the productivity of U.S. workers? 
• How do we best illustrate the power of computational 
thinking? 
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Presenters:  
   Kevin Ashley, University of Pittsburgh 
   Chris Hoffman, Purdue University  
   Alan Kay, Viewpoints Research Institute, Inc. 
   Richard Lipton, Georgia Tech  
   Robert Sproull, Sun Microsystems, Inc. 
 
Committee respondent: M. Brian Blake  
 

12:15 - 1:15 PM 

 

Working Lunch—Other Related Ongoing Efforts  
 
  Andrew Bernat: CRA Education Committee 
 Peter Denning: Great Principles of Computing (via video 
conference) 
 

1:15 - 3:00 PM 

 

Panel 3—Computational Thinking Everywhere (Part II) 
 
Presenters:  
    
   Andrew McGettrick, University of Strathclyde (invited) 
   Edward Fox, Virginia Tech 
   Ian Foster, Argonne National Laboratory/University of Chicago    
  (via conference call) 
   Paulo Blikstein, Northwestern University 
   Eric Roberts, Stanford University  
 
 
Committee respondent:  Robert Constable 
 

3:00 - 3:10 PM 
 

Break 
 

3:10 - 4:40 PM 

 

Panel 4–Technology and Computational Thinking (Show and 
Tell) 
 
• What affordances are provided by new technologies for 
computational thinking? 
 
• What is the role of information technology in imparting 
computational thinking skills? 
 
• What parts of computational thinking can be taught without 
the use of computers? Without the skills of computer 
programming?  
 
Participants:  
   Mitchel Resnick, Massachusetts Institute of Technology 
   Ken Kahn, Oxford University  
   David Moursund, University of Oregon  
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Committee respondent: Janet Kolodner 
 

4:40 - 4:45 PM 
 

Break 
 

 
4:45 - 5:15 PM 

 

Other Related Ongoing Efforts  
   Tim Bell, New Zealand Computer Science Unplugged (via video   
   conference) 
 

5:15 - 5:30 PM 

 

Wrap-up 
 
 

5:30    Adjourn Day-One Public Sessions  
5:30 - 6:15 PM 

 
Reception 
 

6:15 - 8:15 PM 

 

Working Dinner in Small Groups  
[Limited to Committee, Panel Participants, and Staff] 
 
• Homework assignment–What is the core of computational 
thinking?  What are the fundamental principles of computational 
thinking?  What concepts are derivative from the fundamentals?   
 
• Are there multiple decompositions of computational thinking 
into fundamental and derivative parts?  What are some examples? 
 
• How, if at all, can computational thinking be decomposed 
into an intellectual hierarchy?   
 
 

 
 

FEBRUARY 20, 2009 
 
 
8:30 - 8:35 AM  Welcome and Housekeeping 

   Marcia Linn, University of Berkeley, Committee Chair 
 

8:35 - 10:00 AM  Panel 5–Report-back on homework assignments:  
 
Committee respondent: Alfred Aho 
 

10:00 - 10:15 AM  Break 
 

10:15 - 11:45 AM  Panel 6–Bridging into Education 
 
• Are the fundamental principles of computational thinking 
the easiest to grasp?  If so, why?  If not, why not? 
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• Are the fundamental principles the logical starting point for 
the teaching of computational thinking?  If so, why?  If not, why 
not? 
 
Participants:  
   Dor Abrahamson,University of California, Berkeley 
   Owen Astrachan, Duke University  
   Lenore Blum, Carnegie Mellon University  
   Andy diSessa, University of California, Berkeley  
     
Committee respondent: Uri Wilensky 
 

11:45 - 12:45 PM  Working Lunch—Computer Science Advanced Placement 
Efforts 
   Jan Cuny, National Science Foundation 
 

12:45 - 2:15 PM  Panel 7—Related Best Practices in Teaching/Pedagogy 
 
• How do we engage all learners in computational thinking? 
• What are the exposures and experiences needed to 
develop computational thinking? 
• What is the role of the computer in instruction? Where does 
programming fit into computational thinking? 
 
Presenters:  
   Roy Pea, Stanford University 
   Allan Collins, Northwestern University 
   Ursula Wolz, The College of New Jersey 
   Joshua Danish, Indiana University 
 
Committee respondent: Yasmin Kafai 
 

2:15 - 2:30 PM  Break 
 

2:30 - 4:30 PM  Discussion and Wrap-up 
 
• Committee members summarize their individual reactions 
• Floor opened to other workshop participants  
 

4:30 PM    Adjourn 
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Appendix B 

 
Short Biographies of Committee Members,  

Workshop Participants, and Staff 
 
B.1  Committee 

 
Marcia C. Linn (Chair) is a professor specializing in education in mathematics, science, and 
technology in the Graduate School of Education at the University of California, Berkeley. She 
directs the NSF-funded Technology-enhanced Learning in Science (TELS) center . She is a 
member of the National Academy of Education and a fellow of the American Association for 
the Advancement of Science, the American Psychological Association, and the Center for 
Advanced Study in Behavioral Sciences. Board service includes the American Association for 
the Advancement of Science board, the Graduate Record Examination Board of the 
Educational Testing Service, the McDonnell Foundation Cognitive Studies in Education 
Practice board, and the Education and Human Resources Directorate at the National Science 
Foundation. Linn earned a Ph.D. in educational psychology from Stanford University.  
 
Alfred V. Aho (NAE) is the Lawrence Gussman Professor of Computer Science and 
vicechair of undergraduate education for the Computer Science Department at Columbia 
University. Previously, he conducted research at Bell Laboratories from 1963 to 1991, and 
again from 1997 to 2002 as vice president of the Computing Sciences Research Center . 
Aho's current research interests include quantum computing, programming languages, 
compilers, and algorithms. He is part of the Language and Compilers research group at 
Columbia. He is widely known for his development of the AWK programming language with 
Peter J. Weinberger and Brian Kernighan (the “A” stands for "Aho"), and his co-authorship 
of Compilers: Principles, Techniques, and Tools (the "Dragon book") with Ravi Sethi and 
Jeffrey Ullman. He wrote the initial versions of the Unix tools egrep and fgrep. He is also a 
co-author (along with Jeffrey Ullman and John Hopcroft) of a number of widely used 
textbooks on several areas of computer science, including algorithms and data structures, 
and the foundations of computer science. He is a past president of ACM's Special Interest 
Group on Algorithms and Computability Theory. Aho has chaired the Advisory Committee for 
the Computer and Information Sciences Directorate of the National Science Foundation. He 
has received many prestigious honors, including the IEEE's John von Neumann Medal and 
membership in the American Academy of Arts and Sciences. Aho was elected to the National 
Academy of Engineering in 1999 for contributions to the fields of algorithms and 
programming tools. Aho earned his Ph.D. in electrical engineering and computer science 
from Princeton University. 
 
M. Brian Blake is a professor of computer science and associate dean of engineering at 
the University of Notre Dame. His research interests include the investigation of automated 
approaches to sharing information and software capabilities across organization boundaries, 
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sometimes referred to as enterprise integration. His investigations cover the spectrum of 
software engineering: design, specification, proof of correctness, 
implementation/experimentation, performance evaluation, and application. Blake’s long-
term vision is the creation of adaptable software entities or software agents that can be 
deployed on the Internet and, using existing resources, manage the creation of new 
processes, sometimes referred to as interorganizational workflow. He has several ongoing 
projects that make incremental progress toward this long-term vision. In addition, he 
conducts experimentation in the areas of software engineering education and software 
process and improvement to determine the most effective methods for training students 
and professionals to develop module systems that by nature are distributed. Blake has 
consulted for such companies as General Electric, Lockheed Martin, General Dynamics, and 
The MITRE Corporation. He has published more than 95 refereed journal papers and 
conference proceedings in the areas of service-oriented computing, agents and workflow, 
enterprise integration, component-based software engineering, distributed data 
management, and software engineering education. Blake’s work has been funded by the 
Federal Aviation Administration, the MITRE Corporation, the National Science Foundation, 
DARPA, the Air Force Research Laboratory, SAIC, and the National Institutes of Health. He 
earned his doctorate in information technology and computer science from George Mason 
University. 
 
Robert Constable is the dean of the Faculty of Computing and Information Science. 
Formerly he was the chair of the Computer Science Department for 6 years. He also heads a 
research group in automated reasoning and formal methods in the Computer Science 
Department, where he is a professor . Constable is a graduate of Princeton University, where 
he worked with Alonzo Church, one of the pioneers of computer science. He did his Ph.D. 
work at the University of Wisconsin with Stephen Cole Kleene, a Ph.D. student of Church 
and another pioneer of computer science. Church traces his mathematical lineage back to 
Gottfried Wilhelm Leibniz, one of the first logicians interested in mechanical computation 
and the digitization of human knowledge. Constable joined the Cornell University faculty in 
1968. He has supervised more than 43 Ph.D. students in computer science. He is known for 
work in connecting programs and mathematical proofs that has led to new ways of 
automating the production of reliable software. This work is known by the slogan “proofs as 
programs,” and it is embodied in the Nuprl (“new pearl”) theorem prover . He has written 
three books on this topic as well as numerous research articles. Since 1980 he has headed a 
project that uses Nuprl to design and verify software systems, instances of which are still 
operational in industry and science. Currently he is working on extending this programming 
method to concurrent processes, realizing the notion of “proofs as processes.” In 1999 he 
became the first dean of the Faculty of Computing and Information Science, a unit that 
includes the Computer Science Department, the Department of Statistical Science, the 
Information Science Program, and the Program in Computer Graphics. It also sponsors the 
undergraduate major and graduate field in computational biology. 
 
Yasmin B. Kafai is a professor at the Graduate School of Education, University of 
Pennsylvania. In addition, she spent more than a decade on the faculty at the UCLA 
Graduate School of Education and  Information Studies.  As a learning scientist, she has 
researched and developed media-rich software tools and environments, most recently 
Scratch, together with researchers at the MIT Media Lab, that support youth in schools and 
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community centers in becoming designers of games, simulations, and virtual worlds. As part 
of her policy initiatives, she wrote Under the Microscope: A Decade of Gender Equity 
Interventions in the Sciences (2004) and participated in the national commission that 
produced the report Tech-Savvy Girls: Educating Girls in the Computer Age (2000) for the 
American Association of University Women. She also briefed the Computer Science and 
Telecommunications National Research Council report Being Fluent with Information 
Technology (National Academy Press, Washington, D.C., 1999). While conducting research 
at the Massachusetts Institute of Technology Media Laboratory, she received her Ed.D. in 
human development and psychology from Harvard University.  
 
Janet L. Kolodner is a Regents’ Professor in the School of Interactive Computing at 
Georgia Institute of Technology. Her research over the past 30 years has addressed a wide 
variety of issues in learning, memory, and problem solving, both in computers and in 
people. During the 1980s, she pioneered the computer method called case-based reasoning, 
which allows a computer to reason and learn from its experiences. The first case-based 
design aids (CBDA) came from her lab. Archie-2, for example, helped architecture students 
with conceptual design. During the early 1990s, she used the cognitive model implied by 
case-based reasoning to address issues in creative design. JULIA planned meals, Creative 
JULIA figured out what to do with leftover rice, IMPROVISOR did simple mechanical design, 
and ALEC simulated Alexander Graham Bell in his invention of the telephone. Later in the 
1990s, she used the cognitive model in case-based reasoning to guide the design of a 
science curriculum for middle school. Learning by Design™ is a design-based learning 
approach and an inquiry-oriented project-based approach to science learning that has 
children learn science from their design experiences. The sequencing of activities in the 
classroom encourages students to reflect on their design and science experiences in ways 
that case-based reasoning says are appropriate for integrating them well into memory. 
Learning by Design curriculum units and the sequencing structures in Learning by Design 
are being integrated into a full 3-year middle-school science curriculum called Project-Based 
Inquiry Science (PBIS), to be published in time for use in the 2008-2009 academic year . 
Most recently, Kolodner’s research uses what she learned in designing Learning by Design 
to create informal learning environments to help middle schoolers come to think of 
themselves as competent scientific reasoners. In Kitchen Science Investigators, fifth and 
sixth graders learn science in the context of cooking. In Hovering Around, they learn about 
motion and forces, about airflow, and about how to explain in the context of designing 
hovercraft. Kolodner is founding editor in chief of the Journal of the Learning Sciences and 
is a founder and first executive officer of the International Society for the Learning Sciences. 
She has headed up the Cognitive Science Program at Georgia Tech and headed an 
organization called EduTech in the mid-1990s whose mission was to use what we know 
about cognition to design educational software and integrate it appropriately into 
educational environments. She has a B.S. from Brandeis University in math and computer 
science and an M.S. and a Ph.D. in computer science from Yale University. 
 
Lawrence Snyder is a professor of computer science and engineering at the University of 
Washington in Seattle. Snyder's research has focused on parallel computation, including 
architecture, algorithms and languages. He has served on the faculties of Yale and Purdue 
Universities, and has had visiting appointments at UW, Harvard, MIT , Sydney University, the 
Swiss Technological University, the University of Auckland, and Kyoto University. In 1980 he 
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invented programmable interconnect, a method to dynamically configure on-chip 
components, and a technology used today for FPGAs. In 1990 he was co-designer of Chaos 
Router , a randomizing adaptive packet router . He was the principal investigator of the ZPL 
language design project, the first high-level parallel language to achieve "performance 
portability" across all parallel computer platforms. Snyder is the author of Fluency with 
Information Technology: Skills, Concepts and Capabilities, a textbook for non-techie college 
freshmen that teaches fundamental computing concepts; the book is in its third edition. 
With former Ph.D. student Calvin Lin (University of Texas, Austin), he has written Principles 
of Parallel Programming, published in 2008. Snyder was a three-term member of the 
Computer Research Association Board of Directors, developing a series of best-practices 
white papers. He chaired the NSF CISE Advisory Board as well as several CISE directorate 
oversight panels and numerous review panels. The two National Research Council studies 
that he has chaired, produced influential reports – Academic Careers for Experimental 
Computer Scientists and Engineers and Being Fluent with Information Technology (1999). 
He served three terms on the NRC's Army Research Laboratory Technical Advisory Board. 
He serves on ACM's Education Board, has been general chair or program committee chair of 
several ACM and IEEE conferences, and he is a fellow of both the ACM and IEEE. He 
received a B.A. from the University of Iowa in mathematics and economics and his Ph.D. 
from Carnegie Mellon University as a student of A. Nico Habermann.  
 
Uri Wilensky is professor of Learning Sciences and Computer Science at Northwestern 
University and holds appointments in the cognitive science program and in complex 
systems. He is the founder and current director of the Center for Connected Learning and 
Computer-Based Modeling and also a founder and member of the governing board of the 
Northwestern Institute on Complex Systems (NICO). His most recent projects focus on 
developing tools that enable users (both researchers and learners) to simulate, explore and 
make sense of complex systems. His NetLogo agent-based modeling software is in 
widespread use worldwide. Prior to coming to Northwestern, he taught at Tufts University 
and MIT and was a research scientist at Thinking Machines Corporation. Dr . Wilensky is a 
founder and an executive editor of the International Journal of Computers for Mathematical 
Learning. His research interests include computer-based modeling and agent-based 
modeling, STEM education, mathematics in the context of computation, and complex 
systems. He is a recipient of the National Science Foundation’s Career Award as well as the 
Spencer Foundation’s Post-Doctoral Award. He has directed numerous NSF research 
projects focused on developing computer-based modeling tools and studying their use. 
Among these tools are multi-agent modeling languages, such as StarLogoT and NetLogo, 
Model-based curricula such as GasLab, ProbLab, NIELS and BEAGLE Evolution and 
Participatory Simulation Toolkits such as Calc-HubNet and Computer-HubNet. The tools 
enable learners to explore and create simulations of complex phenomena across many 
domains of natural and social science and, through creating and exploring such simulations, 
deepening their understanding of core scientific concepts.  Many of these tools are also in 
use by researchers across a wide variety of domains including the natural sciences, social 
sciences, business and medicine. By providing a “low threshold” language for exploring and 
constructing models, Wilensky hopes to promote modeling literacy -- the sharing and 
critiquing of models in the scientific community, in education and in the public at large. Dr . 
Wilensky did his undergraduate and graduate studies in mathematics, philosophy and 
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computer science at Brandeis and Harvard Universities and received his Ph.D. in media arts 
and sciences from the Massachusetts Institute of Technology. 
 
 
B.2 Workshop Participants 

 
Dor Abrahamson specializes in the study of mathematical intuition, reasoning, and 
learning from the synergistic perspectives of cognitive and socio-cultural theory. He 
investigates in particular the roles that mediated, reflexive interaction with a range of 
technologies plays in students’ content-focused and intellectual development, which he 
views as trajectories from intuition to inscription. A core aspect of Abrahamson’s 
professional practice is the design, production, implementation, and evaluation of innovative 
mixed-media concept-targeted curricular artifacts aligned with the emerging empiricism of 
individual cognition in social context. Operating in design-based research methodology, 
Abrahamson is particularly interested in instances of spontaneous multimodal coordination 
of distributed epistemic and material resources and in the roles of teachers in facilitating 
conceptual insight. Abrahamson also explores the impact of complexity studies’ perspectives 
and methodologies on education research and has been arguing for the use of agent-based 
modeling to advance theories of individual learning in social context. During his tenure as a 
Spencer Postdoctoral Fellow, Abrahamson developed computer-based modules for learning 
probability. He has published in the Handbook of Mathematical Cognition, International 
Journal of Computers for Mathematical Learning (and is a member of the editorial board), 
Educational Studies in Mathematics, Cognition & Instruction , For the Learning of 
Mathematics, Mathematics Teaching in the Middle School, and the Journal of Statistics 
Education, and contributes regularly to major international conferences. He received his 
M.A. in cognitive psychology in 2000 from Tel Aviv University, Israel, and a Ph.D. in learning 
sciences in 2004 from Northwestern University. 

 
Kevin Ashley holds interdisciplinary appointments as a faculty member of the Graduate 
Program in Intelligent Systems at the University of Pittsburgh, a senior scientist at the 
Learning Research and Development Center , a professor of law, and adjunct professor of 
computer science. His goals are to contribute to artificial intelligence (AI) research on case-
based and analogical reasoning, argumentation, and explanation and to develop 
instructional and information retrieval systems for professionals in case-based domains such 
as law and ethics. Currently, he and his students are pursuing research projects in 
automatically indexing legal case texts, engaging law students in online argumentation 
dialogues, intelligent retrieval of ethics codes and cases, and web-based tutoring to help 
students get more from reading ethics cases.  For his Ph.D., he developed an AI CBR 
system, HYPO, which reasons by analogy to past legal cases, makes arguments about legal 
fact situations, and poses hypothetical cases.  MIT Press/Bradford Books published his book, 
based on his dissertation, entitled Modeling Legal Argument: Reasoning with Cases and 
Hypotheticals.  In April 1990, the National Science Foundation selected Professor Ashley as 
a Presidential Young Investigator , and in 2002 he was selected as a Fellow of the American 
Association of Artificial Intelligence. From June 1988 through July 1989, he was a visiting 
scientist at the Thomas J. Watson Research Center , Yorktown Heights, New York.  For 4 
years prior to his computer science graduate work, he was an associate attorney at White & 
Case, a large Wall Street law firm. While a philosophy major at Princeton, he was a research 
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assistant for Professor Walter Kaufmann.  He received a B.A. in philosophy (magna cum 
laude) from Princeton University in 1973, a J.D. (cum laude) from Harvard Law School in 
1976, and a Ph.D. in computer science in 1988 from the University of Massachusetts, where 
he held an IBM Graduate Research Fellowship. 

 
Owen Astrachan is a professor of the practice of computer science at Duke University and 
the department's director of undergraduate studies for teaching and learning. He received 
an NSF CAREER award in 1997 to incorporate design patterns in undergraduate computer 
science curricula, received an IBM Faculty Award in 2004 to support componentization in 
both software and curricula, and was one of two inaugural NSF CISE Distinguished 
Education Fellows in 2007, awarded to revitalize computer science education using case- 
and problem-based learning. Astrachan's research interests have been built on 
understanding how best to teach and learn about object-oriented programming, software 
design, and computer science in general; he is now working on developing a portfolio of 
substantial, interdisciplinary problems that help explain how computer science is relevant to 
students in the social and natural sciences. Astrachan received Duke University's 1995 
Robert B. Cox Distinguished Teaching in Science Award, an Outstanding Instructor Award 
while teaching on sabbatical at the University of British Columbia in 1998, and Duke's 2002 
Richard K. Lublin award for "ability to engender genuine intellectual excitement, ability to 
engender curiosity, knowledge of the field and ability to communicate that knowledge."  He 
earned his A.B. degree with distinction in mathematics from Dartmouth, and as his MAT 
(Math), M.S., and Ph.D. in computer science from Duke. 

 
Tim Bell is an Associate Professor in the department of Computer Science and Software 
Engineering at the University of Canterbury in Christchurch, New Zealand. His current 
research interests include Computers and Music, Public Understanding of (Computer) 
Science, and educational applications of podcasting. He received the Science Communicator 
Award from the NZ Association of Scientists in 1999, and an inaugural New Zealand Tertiary 
Teaching Excellence Award in 2002. He has appeared with his "Computer Science 
Unplugged" show at the Edinburgh International Science Festival, the Dunedin International 
Science Festival, and the Australian Science Festival. He is also a qualified musician, and 
performs regularly on instruments that have black-and-white keyboards. He is co-author of 
the books "Text Compression" and "Managing Gigabytes". 

 
Andrew Bernat was a founding member and chair of the Computer Science Department at 
the University of Texas at El Paso (spending 20 years there) and a former NSF program 
director . He is currently the Executive Director of the Computing Research Association, 
whose mission is to strengthen research and education in the computing fields, expand 
opportunities for women and minorities, and improve the public’s and policymakers’ 
understanding of the importance of computing and computing research in our society.   In 
recognition of "his success in creating arguably the strongest computer science department 
at a minority-serving institution", the Computing Research Association honored him with the 
1997 A. Nico Habermann Award. 

 
Paulo Blikstein is an assistant professor at Stanford University's School of Education, with 
a courtesy appointment in the Computer Science Department. His research focuses on 
computational literacy, low-cost educational technologies for low-income settings, and STEM 
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education.  His work cuts across age groups – he has worked extensively with inner-city 
students in developing countries, such as Brazil, Mexico, Senegal, and Costa Rica, but also 
with undergraduates in elite U.S. institutions. His research tries to bring the most cutting-
edge computational tools to the classroom, creating environments for students to 
authentically engage in advanced, deep scientific inquiry. 

 
Lenore Blum is Distinguished Career Professor of Computer Science at Carnegie Mellon 
University where she co-directs the ALADDIN Center for Algorithm Adaptation, 
Dissemination and Integration, is a faculty advisor to the student organization 
Women@SCS, and is the principal investigator for the Google-funded CS4HS program for 
high school teachers. Her most recent creation and passion is Project Olympus, a high-tech 
innovation center that she directs at Carnegie Mellon. In 2009, the impact of this work was 
acknowledged by the Carnegie Science “Catalyst” award.  Blum’s research, from her early 
work in model theory and differential fields (logic and algebra) to her more recent work in 
developing a theory of computation and complexity over the real numbers (mathematics 
and computer science), has focused on merging seemingly unrelated areas.  She received 
her doctorate in mathematics from MIT the same year Princeton University first allowed 
women to enter its graduate program. She then taught at the University of California, 
Berkeley and at Mills College, where she founded the Department of Mathematics and 
Computer Science (the first computer science department at a women’s college), served as 
its head or co-head for 13 years, and became the first holder of the Letts-Villard Chair . In 
1988 she joined the Theory Group of the newly formed International Computer Science 
Institute in Berkeley and from 1992 to 1996 also served as deputy director of the 
Mathematical Sciences Research Institute.  Blum spent 2 years, 1996-1998, spanning the 
historic handover of Hong Kong from Britain to China at CityU of Hong Kong as visiting 
professor of mathematics and computer science where she completed her book, Complexity 
and Real Computation, there with her colleagues.  She has served the professional 
community in numerous capacities, including as president of the Association for Women in 
Mathematics, as vice president of the American Mathematical Society, and as a member of 
numerous committees, including the MIT Visiting Committee for Mathematics and the ACM 
SIGACT Committee for the Advancement of Theoretical Computer Science.   She is a Fellow 
of the American Association for the Advancement of Science. She received her Ph.D. in 
mathematics from MIT in 1968. 

 
Allan Collins is a professor emeritus of education and social policy at Northwestern 
University. He is a member of the National Academy of Education and a fellow of the 
American Association for Artificial Intelligence, the Cognitive Science Society, the American 
Educational Research Association, and the American Association for the Advancement of 
Science. He served as a founding editor of the journal Cognitive Science and as first chair of 
the Cognitive Science Society. He has studied teaching and learning for more than 30 years 
and has written extensively on related topics. He is best known in psychology for his work 
on how people answer questions, in artificial intelligence for his work on reasoning and 
intelligent tutoring systems, and in education for his work on situated learning, inquiry 
teaching, design research, and cognitive apprenticeship. From 1991 to 1994 he was co-
director of the U.S. Department of Education’s Center for Technology in Education. 
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Jan Cuny is a program officer at the National Science Foundation, heading the Broadening 
Participation in Computing program. Before coming to NSF in 2004, she was a faculty 
member in computer science at Purdue University, the University of Massachusetts, and the 
University of Oregon. Cuny has been involved for many years in efforts to increase the 
participation of women in computing research. She was a longtime member of the 
Computing Research Association’s Committee on the Status of Women (CRA-W), serving 
among other activities as a CRA-W co-chair , a mentor in its Distributed Mentoring Program, 
and a lead on its Academic Career Mentoring Workshop, Grad Cohort, and Cohort for 
Associated Professors projects. She was also a member of the Advisory Board for Anita Borg 
Institute for Woman and Technology, the leadership team of the National Center for Women 
in Technology, the executive committee of the Coalition to Diversify Computing, and the 
ACM Education Council She wasprogram chair of the 2004 Grace Hopper Conference and 
the general chair of the 2006 conference. . For her efforts with underserved populations, 
Cuny was a recipient of one of the 2006 ACM President’s Awards and the 2007 CRA A. Nico 
Habermann Award. 

 
Joshua Danish’s research examines the role of external representations, such as 
drawings, maps, and computer simulations, in supporting cognition and learning.  To study 
learning and development in classroom contexts, he employs cultural historical activity 
theory to articulate the influence of various mediators – the physical tools, rules, division of 
labor , and local community – on student’s activities as they learn and develop.  Recent 
research has included the development and study of BeeSign, a computer simulation and 
accompanying curriculum that engages kindergarten and first-grade students in learning 
about the nectar-gathering behavior of honeybee hives; the Community Mapping Project in 
which 7th grade students learned basic statistics concepts using the MyWorld Geographical 
Information Systems mapping software to study local community issues; and the Semiotic 
Pivots and Activity Spaces for Elementary Science project, which takes advantage of sensing 
technologies and augmented reality tools to support first and second grade students in 
learning about physical science concepts. 

 
Peter J. Denning is a Distinguished Professor at the Naval Postgraduate School in 
Monterey, California.  He chairs the Computer Science Department and directs the 
Cebrowski Institute, an interdisciplinary research center for innovation and information 
superiority.  In the 1990s he was at George Mason University, where he was vice provost, 
associate dean, Computer Science department chair , and founder of the Center for the New 
Engineer .  In the 1980s, he was the founding director of the Research Institute for 
Advanced Computer Science at NASA-Ames and was co-founder of CSNET.  He received a 
Ph.D. from MIT and a B.E.E. from Manhattan College.  He was president of the Association 
for Computing Machinery (ACM), in 1980-1982.  As chair of the ACM publications board in 
1992-1998, he was project leader for the ACM digital library, now the ACM's crown jewel.  
In 1967 he discovered the locality principle for referencing storage objects and used it to 
invent the influential working set model for program behavior; his original paper was named 
to the ACM SIGOPS Hall of Fame in 2005.  He helped establish virtual memory as a 
permanent part of operating systems.  He contributed important extensions to operational 
analysis, an approach to computer system performance prediction.  He leads the Great 
Principles of Computing project, which is identifying the scientific theories of computing and 
applying them to curriculum innovation.  He also co-leads an Innovation project that has 
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identified and teaches the seven foundational practices of innovation.  He has published 7 
books and 315 articles on computers, networks, and their operating systems.  He is working 
on two more books, one on the foundational practicess of innovation and the other on the 
great principles of computing. In 2002, he was named one of the top five best teachers at 
George Mason University and the best teacher in the School of Information Technology and 
Engineering.  In 2003, he received one of Virginia's 10 outstanding faculty awards.  He 
holds three honorary degrees, three professional society fellowships, two best-paper 
awards, three distinguished service awards, the ACM Outstanding Contribution Award, the 
ACM SIGCSE Outstanding CS Educator Award, and the prestigious ACM Karl Karlstrom 
Outstanding Educator Award.  In 2007 ACM gave him a special award for 40 years of 
continuous volunteer service, and the NSF gave him one of two Distinguished Education 
Fellow awards. 

 
Andrea diSessa is the Corey Professor of Education and a member of the National 
Academy of Education. His research centers around conceptual and experiential knowledge 
in physics, and large-scale and deep implications of the use of computers in education 
(“new literacies”). His current work focuses on student ideas concerning patterns of 
behavior and control—aka dynamical systems theory. He was a fellow at the Center for 
Advanced Study in the Behavioral Sciences in 1997-1998 and 2007-2008. He wrote the 
books Changing Minds: Computers, Learning and Literacy (2000) and Turtle Geometry: The 
Computer as a Medium for Exploring Mathematics (with H. Abelson, 1981), and he edited 
the volume Computers and Exploratory Learning (with C. Hoyles, R. Noss, and L. Edwards, 
1995). He received his Ph.D. in physics from MIT , and an A.B., also in physics, from 
Princeton University. 

 
Ian Foster has been appointed director of the Computation Institute. The Computation 
Institute was created by the University of Chicago and Argonne National Laboratory in 1999 
in recognition of the increasingly central role that computation plays in many disciplines of 
the sciences, medicine, and the humanities. Foster joined Argonne's Mathematics and 
Computer Science Division in 1989 and has most recently served as associate division 
director and senior scientist. He is also the Arthur Holly Compton Distinguished Service 
Professor of Computer Science at the University of Chicago. His research interests are in 
distributed and parallel computing, and computational science. He has published six books 
and more than 300 articles and technical reports in these areas. The Distributed Systems 
Laboratory that he heads at Argonne and Chicago pursues research in these areas and also 
development of the Globus Toolkit, open-source Grid software used widely in business and 
science. 

 
Edward Fox, after almost a year running the computer operations at the International 
Institute for Tropical Agriculture, Ibadan, Nigeria, started teaching at Virginia Tech in 1983. 
Since 1987 he has worked on electronic theses and dissertations; he is executive director of 
the Networked Digital Library of Theses and Dissertations. His research, teaching, and 
service have focused on information, including searching, multimedia/hypertext, and digital 
libraries. Fox is starting his 103rd  funded research grant; these have included working with 
many disciplines, including animal care, archaeology, auto parts, chemistry, electronic 
publishing, fisheries, geography, gerontology, health, library and information science, 
physics, and sociology. Two current NSF grants supporting education include(1) “Living In 
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the KnowlEdge Society (LIKES),” which promotes connecting computing with all other 
disciplines to ensure better preparation of college students, and (2) “Ensemble,” an NSDL 
pathways project that aims  to help “K-gray” learning related to computing.  Fox completed 
his B.S. in electrical engineering and computer science in 1972 at M.I.T . He also pursued 
graduate degrees in information retrieval at Cornell from 1978 to 1982. 

 
Christopher Hoffmann is well known for his work in geometric computing and geometric 
constraint solving.  The simulations of the 9/11 attacks on the Pentagon and on the WTC-1 
building, generated worldwide media attention.  His current projects include shape modeling 
for traumatic brain injury simulations, and the NSF-supported SECANT project teaching 
computational thinking to science majors. 

 
Ken Kahn is a senior researcher at Oxford University and the London Knowledge 
Laboratory. His interest in programming languages for children was sparked while he was a 
Ph.D. student at the MIT AI Laboratory in the 1970s. While at the MIT AI Lab, he  worked 
with Seymour Papert and others in the Logo Group. After 15 years as a researcher in 
programming languages and AI, he returned to children’s programming languages when he 
founded Animated Programs to develop ToonTalk. ToonTalk is an advanced programming 
language that looks like a video game. Children as young as 3 have successfully used it to 
create programs by training virtual robots to do actions such as giving birds messages to 
deliver , loading up trucks, and putting things in boxes. Kahn participated in two large-scale 
European projects in which children built computer games using ToonTalk. More recently he 
has been designing and building construction kits that enable students to build computer 
simulations by composing transparent modules. 

 
Alan Kay, president of Viewpoints Research Institute, Inc., is one of the earliest pioneers of 
object-oriented programming, personal computing, and graphical user interfaces. His 
contributions have been recognized with the Charles Stark Draper Prize of the National 
Academy of Engineering “for the vision, conception, and development of the first practical 
networked personal computers”; the Alan. M. Turing Award from the Association for 
Computing Machinery “for pioneering many of the ideas at the root of contemporary object-
oriented programming languages, leading the team that developed Smalltalk, and for 
fundamental contributions to personal computing”; and the Kyoto Prize from the Inamori 
Foundation “for creation of the concept of modern personal computing and contribution to 
its realization.” This work was done in the rich context of Advanced Research Projects 
Agency (ARPA) and Xerox Palo Alto Research Center (PARC) with many talented colleagues.  
He is an elected fellow of NAE and AAAS, as well as a member of RSA, ACM, and CHM.  At 
Viewpoints Research Institute he and his colleagues continue to explore advanced systems 
and programming design by aiming for a “Moore’s law” advance in software creation of 
several orders of magnitude. Kay and Viewpoints are also deeply involved in the One Laptop 
Per Child initiative that seeks to create a Dynabook-like “$100 laptop” for every child in the 
world (especially in the Third world). Kay has a B.A. in mathematics and biology with minor 
concentrations in English and anthropology from the University of Colorado, 1966. He also 
holds an M.S. and a Ph.D. in computer science (1968 and 1969, both with distinction) from 
the University of Utah. 
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Peter Lee is the head of the Computer Science Department at Carnegie Mellon University.  
In this capacity, he oversees a computing organization whose research and education 
programs are consistently ranked among the top four in the nation. Prior to assuming his 
current position, Lee was the vice provost for research, providing administrative oversight 
and strategic guidance for Carnegie Mellon's research activities, an enterprise that exceeds 
$400 million annually in sponsored research.  Lee is an active researcher, educator , 
administrator , and servant to the academic community.  For his research, he has received 
several awards, including the ACM SIGOPS Hall of Fame Award, and election as an ACM 
Fellow.  He is a member of the board of directors of the Computing Research Association 
(where he chairs the Government Affairs Committee), the Computing Community 
Consortium Council, the Computer Science and Telecommunications Board of the National 
Research Council, and the DARPA Information Science and Technology Board (of which he 
is the vice chair). 

 
Richard Lipton is a member of the National Academy of Engineering.  Dr . Lipton's 
professional career has been primarily in academia. He has held faculty appointments at 
Yale University, the University of California at Berkeley and Princeton University before 
joining the faculty in the college of Computing at Georgia Tech. In addition to his computer 
science academic appointments, Dr . Lipton was the founding director of a computer science 
research laboratory for the Panasonic Corporation and is currently a chief consulting 
scientist at Telcordia (formerly known as Bellcore).  Dr . Lipton's research is primarily, but 
not exclusively focused on theory. In a recent paper which explored the power of automata-
based proof systems, he explored one way to address the NP=co-NP questions which 
considered the length of proofs of tautologies in various proof systems. In this joint work 
with A. Viglas he considered proof systems defined by appropriate classes of automata. Dr . 
Lipton found that is general, starting from a given class of automata, it was possible to 
define a corresponding proof system in a natural way. One new and more powerful proof 
system was based on the class of push down automata. In this work, Dr . Lipton presented 
an exponential lower bound for oblivious read-once branching programs that resulted in a 
proof system more powerful than oblivious regular resolution.  Dr . Lipton has also made 
important contributions in the areas of program testing, software engineering and most 
recently, DNA computing. This latter area combines molecular biology and computer 
science. It is generally acknowledged that Dr . Lipton was one of the original pioneers in the 
field of DNA computing, along with Len Adleman. 

 
Andrew McGettrick studied Pure Mathematics at the University of Glasgow. He was 
awarded a scholarship to Peterhouse, Cambridge obtaining his PhD in Pure Mathematics 
and, later , Diploma in Computer Science. Throughout his career he has been at the 
University of Strathclyde, promoted to professor in 1984 and served for many years as the 
Head of the Department of Computer and Information Sciences. He is a Fellow of the Royal 
Society of Edinburgh, a Fellow of the Institution of Engineering and Technology and a 
Fellow of the British Computer Society where he is also Vice President, Qualifications and 
Standards. Prof. McGettrick is the chair of the ACM Education Board and Education Council, 
which provides curriculum guidelines for the key sub-disciplines of computing. He also chairs 
the IET/BCS Competency Liaison Group. Professor McGettrick holds the ACM SIGCSE Award 
for Lifetime Service. 
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David Moursund is professor emeritus at the University of Oregon. He founded the 
International Society for Technology in Education and served as its executive officer for 19 
years. He served 6 years as the first head of the Computer Science Department at the 
University of Oregon. He is the major or co-major professor of six Ph.D. students in 
mathematics and 70 in the College of Education. He is the author or co-author of more than 
50 books and more than 200 articles. Currently, Moursund runs a nonprofit organization 
named Information Age Education. Its activities include a Wiki, a website, and a free twice-
a-month newsletter . He received his doctorate is in mathematics from the University of 
Wisconsin-Madison. 

  
Roy Pea is Stanford University Professor of the Learning Sciences and director of the 
Stanford Center for Innovations in Learning. He has published widely on such topics as 
distributed cognition, learning, and education fostered by advanced technologies including 
scientific visualization, online communities, digital video collaboratories, and wireless 
handheld computers.  Much of this work concerns aspects of computational thinking on the 
part of tool users. His current work is developing a new paradigm for everyday networked 
video interactions for learning and communications, and for how informal and formal 
learning can be better understood and connected, as co-principal investigator of the LIFE 
Center funded by the National Science Foundation as one of several large-scale national 
Science of Learning Centers.  He is co-editor of the 2007 volume Video Research in the 
Learning Sciences. He was co-author of the 2000 National Academy Press volume How 
People Learn. Pea founded and served as the first director of the learning sciences doctoral 
programs at Northwestern University (1991) and Stanford University (2001). He is a fellow 
of the National Academy of Education, the Association for Psychological Science, The Center 
for Advanced Study in the Behavioral Sciences, and the American Educational Research 
Association. In 2004-2005, he was president of the International Society for the Learning 
Sciences. 

 
Mitchel Resnick, professor of Learning Research at the MIT Media Laboratory, develops 
new technologies to engage people (especially children) in creative learning experiences. 
His research group developed the "programmable bricks" that were the basis for the LEGO 
MindStorms robotics construction kits. Resnick co-founded the Computer Clubhouse project, 
an international network of after-school learning centers for youth from low-income 
communities. Resnick's group recently developed a new programming language, called 
Scratch, which makes it easier for children to create their own interactive stories, games, 
and animations – and share their creations on the Web. In the process, children learn to 
think creatively, reason systematically, and work collaboratively. He worked for 5 years as a 
science and technology journalist for Business Week magazine, and he has consulted 
around the world on the uses of new technologies in education. Resnick earned a B.S. in 
physics from Princeton University, and an M.S. and a Ph.D. in computer science from MIT . 

 
Eric Roberts is professor of computer science at Stanford University and past chair of the 
ACM Education Board.  His research focuses on computer science education, and is he the 
author of five textbooks that have been used widely throughout the world.  From 1998 to 
2005, Roberts was principal investigator for the Bermuda Project, which developed the 
computer science curriculum for Bermuda’s public secondary schools.  Roberts has also 
been active in professional organizations dedicated to computer science education.  From 
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2005 to 2007, he served as co-chair of the Education Board of the Association for 
Computing Machinery (ACM) and was for many years on the board of the ACM Special 
Interest Group on Computer Science Education (SIGCSE).  From 1998 to 2001, Roberts 
served as co-chair and principal editor for the ACM/IEEE CS Joint Task Force on Computing 
Curricula 2001, which published a detailed set of curriculum guidelines in December 2001.  
He also chaired the ACM Java Task Force from 2004 to 2006.  In 2003, Roberts received the 
SIGCSE Award for Outstanding Contribution to Computer Science Education.  Professor 
Roberts is a fellow of the ACM and the American Association for the Advancement of 
Science. He received his A.B., M.S., and Ph.D. degrees in applied mathematics from Harvard 
University. 

 
Robert Sproull is a vice president and fellow at Sun Microsystems. He founded and led the 
Massachusetts branch of Sun Microsystems Laboratories for more than 10 years and is 
currently serving as interim director of Sun Microsystems Laboratories. Since undergraduate 
days, he has been building hardware and software for computer graphics: clipping 
hardware, an early device-independent graphics package, page description languages, laser 
printing software, and window systems. He has also been involved in VLSI design, especially 
of asynchronous circuits and systems. Before joining Sun in 1990, he was a principal with 
Sutherland, Sproull & Associates, an associate professor at Carnegie Mellon University, and 
a member of the Xerox Palo Alto Research Center . He is a coauthor with William Newman of 
the early text, Principles of Interactive Computer Graphics. He is an author of the recently 
published book Logical Effort, which deals with designing fast CMOS circuits. Dr . Sproull was 
elected in 1997 to the National Academy of Engineering for his work in computer graphics 
and digital printing.  He is a fellow of the American Academy of Arts and Sciences, and has 
served on the US Air Force Scientific Advisory Board. Dr . Sproull received a B.A in physics 
from Harvard College in 1968, and an M.S. and a Ph.D. in computer science from Stanford 
University, in 1970 and 1977.  

 
Gerald Jay Sussman is the Panasonic (formerly Matsushita) Professor of Electrical 
Engineering at the Massachusetts Institute of Technology.  Since 1964, he has worked on 
artificial intelligence research at MIT  He has also worked in computer languages and in 
computer architecture and VLSI design.  Using the Digital Orrery he designed, Sussman has 
worked with Jack Wisdom to discover numerical evidence for chaotic motions in the outer 
planets.  Sussman is coauthor (with Hal Abelson and Julie Sussman) of the introductory 
computer science textbook used at MIT from 1985 through 2007.  The textbook (Harold 
Abelson, Gerald Jay Sussman, and Julie Sussman, 1985, Structure and Interpretation of 
Computer Programs, (1st edition), Cambridge, MA, MIT Press) has been translated into 
French, German, Polish, Chinese, and Japanese.  Sussman has pioneered the use of 
computational descriptions to communicate methodological ideas in teaching subjects in 
electrical circuits and in signals and systems. Over the past decade Sussman and Wisdom 
have developed a subject that uses computational techniques to communicate a deeper 
understanding of advanced classical mechanics.  Computational algorithms are used to 
express the methods used in the analysis of dynamical phenomena. Expressing the methods 
in a computer language forces them to be unambiguous and computationally effective.  
Sussman and Wisdom, with Meinhard Mayer , have produced a textbook, Structure and 
Interpretation of Classical Mechanics, to capture these ideas.  Sussman is a fellow of the 
Institute of Electrical and Electronics Engineers. He is a member of the National Academy of 
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Engineering (NAE), and is also a fellow of the American Association for the Advancement of 
Science, a fellow of the American Association for Artificial Intelligence, a fellow of the 
Association for Computing Machinery (ACM),  the American Academy of Arts and Sciences, 
and the New York Academy of Sciences. He received both his S.B. and Ph.D. in mathematics 
from the Massachusetts Institute of Technology in 1968 and 1973, respectively. 

 
Jeannette M. Wing is the President's Professor of Computer Science in the Computer 
Science Department at Carnegie Mellon University.  She received her S.B., S.M., and Ph.D. 
from the Massachusetts Institute of Technology.  From 2004-2007, she was head of the 
Computer Science Department at Carnegie Mellon.  Currently on leave from CMU, she is the 
assistant director of the Computer and Information Science and Engineering Directorate at 
the National Science Foundation.  Wing's general research interests are in the areas of 
specification and verification, concurrent and distributed systems, programming languages, 
and software engineering.  Her current focus is on the foundations of trustworthy 
computing, with specific interests in security and privacy.  She published a viewpoint article 
in the March 2006 issue of Communications of the Association of Computing Machinery 
entitled “Computational Thinking. 

 
Ursula Wolz is The College of New Jersey (TCNJ) Associate Professor of Computer Science 
and Interactive Multimedia. Wolz is also the principal investigator for the NSF "Broadening 
Participation in Computing via Community Journalism for Middle Schoolers" program, and 
she was the principal investigator of a Microsoft Research project on multidisciplinary game 
development. She is a recognized computer science educator with a broad range of 
publications who has taught students including disabled children, urban teachers, and elite 
undergraduates for more than 30 years.  She is a co-founder of the Interactive Multimedia 
Program at TCNJ.  She has a background in computational linguistics, with a Ph.D. in 
computer science from Columbia University, a master’s degree in computing in education 
from Columbia Teachers College, and a bachelor's degree from MIT , where she was part of 
Seymour Papert's Logo group at the very beginning of research on constructivist computing 
environments. 

 
Wm. A. Wulf is a computer scientist notable for his work in programming languages and 
compilers. As of 2007, he is a professor at the University of Virginia.  Wulf’s research has 
included computer architecture, computer security, and hardware-software codesign.  While 
at Carnegie Mellon University, he designed the BLISS programming language and developed 
a groundbreaking optimizing compiler for it. Wulf is a former president of the National 
Academy of Engineering and has previously chaired the Computer Science and 
Telecommunications Board of the National Research Council. He serves on the Council of 
the Associattion of Computing Machinery, and is a reviewing editor of Science. In 1994 he 
was inducted as a fellow of the ACM. In 1993, Wulf was elected to the National Academy of 
Engineering for professional leadership and for contributions to programming systems and 
computer architecture. He attended the University of Illinois, receiving a B.S. in engineering 
physics and an M.S. in electrical engineering, and then achieved a Ph.D. in computer 
science from the University of Virginia. 
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Herbert S. Lin, the study director , is chief scientist for the National Research Council’s 
Computer Science and Telecommunications Board, where he has been a study director for 
major projects on public policy and information technology. These studies include a 1996 
study on national cryptography policy (Cryptography's Role in Securing the Information 
Society ), a 1991 study on the future of computer science (Computing the Future), a 1999 
study of Defense Department systems for command, control, communications, computing, 
and intelligence (Realizing the Potential of C4I: Fundamental Challenges), a 2000 study on 
workforce issues in high-technology (Building a Workforce for the Information Economy), a 
2002 study on protecting kids from Internet pornography and sexual exploitation (Youth, 
Pornography, and the Internet), a 2004 study on aspects of the FBI's information 
technology modernization program (A Review of the FBI's Trilogy IT Modernization 
Program), a 2005 study on electronic voting (Asking the Right Questions About Electronic 
Voting), a 2005 study on computational biology (Catalyzing Inquiry at the Interface of 
Computing and Biology), a 2007 study on privacy and information technology (Engaging 
Privacy and Information Technology in a Digital Age), a 2007 study on cybersecurity 
research (Toward a Safer and More Secure Cyberspace), a 2009 study on health care 
information technology (Computational Technology for Effective Health Care), and a 2009 
study on cyberattack (Technology, Policy, Law, and Ethics Regarding U.S. Acquisition and 
Use of Cyberattack Capabilities).   Before his NRC service, he was a professional staff 
member and staff scientist for the House Armed Services Committee (1986-1990), where 
his portfolio included defense policy and arms control issues. He received his doctorate in 
physics from MIT .  Apart from his CSTB work, he is published in cognitive science, science 
education, biophysics, and arms control and defense policy. He also consults on K-12 math 
and science education. 
 
Enita Williams is an associate program officer with the Computer Science and 
Telecommunications Board of the National Research Council. She formerly served as a 
research associate for the Air Force Studies Board of the National Academies where she 
supported a number of projects including a standing committee for the Special Operations 
Command (SOCOM) and standing committee for the intelligence community (TIGER). Prior 
to her work at the National Academies, she served as a program assistant with the Scientific 
Freedom, Responsibility and Law Program of AAAS, where she drafted the human 
enhancement workshop report. Ms. Williams graduated from Stanford University with a B.A. 
in public policy with a focus on science and technology policy, and an M.A. in 
communications. 
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Appendix C 

 
Executive Summary from Being Fluent with Information Technology1 

 
Information technology is playing an increasingly important role in the work and 

personal lives of citizens.  Computers, communications, digital information, software—the 
constituents of the information age—are everywhere. 

Between those who search aggressively for opportunities to learn more about 
information technology and those who choose not to learn anything at all about information 
technology, there are many who recognize the potential value of information technology for 
their everyday lives and who realize that a better understanding of information technology 
will be helpful to them.  This realization is based on several factors: 

 
• Information technology has entered our lives over a relatively brief period of time with 

little warning and essentially no formal educational preparation for most people.  
• Many who currently use information technology have only a limited understanding of the 

tools they use and a (probably correct) belief that they are underutilizing them.  
• Many citizens do not feel confident or in control when confronted by information 

technology, and they would like to be more certain of themselves.  
• There have been impressive claims for the potential benefits of information technology, 

and many would like to realize those benefits.  
• There is concern on the part of some citizens that changes implied by information 

technology embody potential risks to social values, freedoms or economic interests, etc., 
obligating them to become informed. 

 
And, naturally, there is simple curiosity about how this powerful and pervasive technology 
works. 

These various motivations to learn more about information technology raise the 
general question, What should everyone know about information technology in order to use 
it more effectively now and in the future?  Addressing that question is the subject of this 
report. 

The answer to this question is complicated by the fact that information technology is 
changing rapidly.  The electronic computer is just over 50 years old, "PC," as in personal 
computer , is less than 20 years old, and the World Wide Web has been known to the public 
for less than five years.  In the presence of rapid change, it is impossible to give a fixed, 
once-and-for-all course that will remain current and effective.  

Generally, "computer literacy" has acquired a "skills" connotation, implying 
competency with a few of today’s computer applications, such as word processing and e-
mail.  Literacy is too modest a goal in the presence of rapid change, because it lacks the 
necessary "staying power ."  As the technology changes by leaps and bounds, existing skills 
become antiquated and there is no migration path to new skills.  A better solution is for the 
individual to plan to adapt to changes in the technology.  This involves learning sufficient 

                                            
1 NOTE: Reprinted from National Research Council, 1999, Being Fluent with Information 

Technology, Washington, D.C.: National Academy Press, pp. 1-5. 
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foundational material to enable one to acquire new skills independently after one's formal 
education is complete. 

This requirement of a deeper understanding than is implied by the rudimentary term 
"computer literacy" motivated the committee to adopt "fluency" as a term connoting a 
higher level of competency.  People fluent with information technology (FIT persons) are 
able to express themselves creatively, to reformulate knowledge, and to synthesize new 
information.  Fluency with information technology (i.e., what this report calls FITness) 
entails a process of lifelong learning in which individuals continually apply what they know 
to adapt to change and acquire more knowledge to be more effective at applying 
information technology to their work and personal lives. 

Fluency with information technology requires three kinds of knowledge:  
contemporary skills, foundational concepts, and intellectual capabilities.  These three kinds 
of knowledge prepare a person in different ways for FITness. 

 
• Contemporary skills, the ability to use today’s computer applications, enable people to 

apply information technology immediately.  In the present labor market, skills are an 
essential component of job readiness.  Most importantly, skills provide a store of 
practical experience on which to build new competence. 

• Foundational concepts, the basic principles and ideas of computers, networks, and 
information, underpin the technology.  Concepts explain the how and why of information 
technology, and they give insight into its opportunities and limitations.  Concepts are the 
raw material for understanding new information technology as it evolves. 

• Intellectual capabilities, the ability to apply information technology in complex and 
sustained situations, encapsulate higher-level thinking in the context of information 
technology.  Capabilities empower people to manipulate the medium to their advantage 
and to handle unintended and unexpected problems when they arise.  The intellectual 
capabilities foster more abstract thinking about information and its manipulation. 

 
For specificity, the report enumerates the ten highest-priority items for each of the 

three types of knowledge.  (Box ES.1 lists these ten items for each type of knowledge.)  The 
skills, linked closely to today’s computer usage, will change over time, but the concepts and 
capabilities are timeless. 

Concepts, capabilities, and skills—the three different types of knowledge of 
FITnessoccupy separate dimensions, implying that a particular activity involving 
information technology will involve elements of each type of knowledge.  Learning the skills 
and concepts and developing the intellectual capabilities can be undertaken without 
reference to each other , but such an effort will not promote FITness to any significant 
degree.  The three elements of FITness are co-equal, each reinforcing the others, and all 
are essential to FITness. 

FITness is personal in the sense that individuals fluent with information technology 
evaluate, distinguish, learn, and use new information technology as appropriate to their own 
personal and professional activities.  What is appropriate for an individual depends on the 
particular applications, activities, and opportunities for being FIT that are associated with 
the individual’s area of interest or specialization.     

FITness is also graduated and dynamic.  It is graduated in the sense that FITness is 
characterized by different levels of sophistication (rather than a single fluent/not fluent 
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judgment).  And, it is dynamic in that FITness entails lifelong learning as information 
technology evolves.   

In short, FITness should not be regarded as an end state that is independent of 
domain, but rather as something that develops over a lifetime in particular domains of 
interest and that has a different character and tone depending on which domains are 
involved.  Accordingly, the pedagogic goal is to provide students with a sufficiently complete 
foundation of the three types of knowledge that they can "learn the rest of it" on their own 
as the need arises throughout life.  

Because FITness is fundamentally integrative, calling upon an individual to 
coordinate information and skills with respect to multiple dimensions of a problem and to 
make overall judgments and decisions taking all such information into account, a project-
based approach to developing FITness is most appropriate.  Projects of appropriate scale 
and scope inherently involve multiple iterations, each of which provides an opportunity for 
an instructional checkpoint or intervention.  The domain of a project can be tailored to an 
individual’s interest (e.g., in the department of a student’s major), thereby providing 
motivation for a person to expend the (non-trivial) effort to master the concepts and skills 
of FITness.  In addition, a project of appropriate scope will be sufficiently complex that 
intellectual integration is necessary to complete it.  Note also that much of the infrastructure 
of existing skills-based computer or information technology literacy efforts (e.g., hardware, 
software, network connections, support staff) will be important elements of efforts to 
promote FITness. 

Although the essentials of FITness are for the most part not dependent on 
sophisticated mathematics, and should therefore generally be accessible in some form to 
every citizen, any program or effort to make individuals more FIT must be customized to the 
target population.  Because the committee was composed of college and university faculty, 
the committee chose to focus its implementational concerns on the four-year college or 
university graduate as one important starting point for the development of FITness across 
the citizenry.  Further , the committee believes that successful implementation of FITness 
instruction will requires serious rethinking of the college and university curriculum.  It will 
not be sufficient for individual instructors to revisit their course content or approach.  
Rather , entire departments must examine the question of the extent to which their students 
will graduate FIT .  Universities need to concern themselves with the FITness of students 
who cross discipline boundaries and with the extent to which each discipline is meeting the 
goals of universal FITness.  

In summary, FIT individuals, those who know a starter set of IT skills, who 
understand the basic concepts on which IT is founded, and who have engaged in the 
higher-level thinking embodied in the intellectual capabilities, should use information 
technology confidently, should come to work ready to learn new business systems quickly 
and use them effectively, should be able to apply IT to personally relevant problems, and 
should be able to adapt to the inevitable change as IT evolves over their lifetime.  To be FIT 
is to possess knowledge essential to using information technology now and in the future. 
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Box ES.1  The Components of Fluency with Information Technology 

 
Intellectual Capabilities 
  
1. Engage in sustained reasoning. 
2. Manage complexity. 
3. Test a solution. 
4. Manage problems in faulty solutions. 
5. Organize and navigate information structures and evaluate information. 
6. Collaborate. 
7. Communicate to other audiences. 
8. Expect the unexpected. 
9. Anticipate changing technologies. 
10.  Think about information technology abstractly. 
 
Information Technology Concepts 
 
1. Computers  
2. Information systems 
3. Networks 
4. Digital representation of information 
5. Information organization 
6. Modeling and abstraction 
7. Algorithmic thinking and programming 
8. Universality   
9. Limitations of information technology 
10. Societal impact of information and information technology 
 
Information Technology Skills 
 
1. Setting up a personal computer 
2. Using basic operating system features   
3. Using a word processor to create a text document 
4. Using a graphics and/or an artwork package to create illustrations, slides, or other image-
based expressions of ideas 
5. Connecting a computer to a network 
6. Using the Internet to find information and resources 
7. Using a computer to communicate with others 
8. Using a spreadsheet to model simple processes or financial tables 
9. Using a database system to set up and access useful information  
10. Using instructional materials to learn how to use new applications or features 
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